Russian Journal of Applied Chemistry

, Volume 91, Issue 5, pp 813–821 | Cite as

Effect of Composition and Structure of Aqueous Monoethanolamine Solutions on Carbon Dioxide Sorption and Desorption in Purification of Gas Mixtures

  • E. G. NovitskiiEmail author
  • V. P. Vasilevskii
  • V. I. Vasil’eva
  • E. A. Goleva
  • E. A. Grushevenko
  • A. V. Volkov
Sorption and Ion Exchange Processe


Possibility of raising the efficiency of the monoethanolamine purification of gas mixtures to remove carbon dioxide is demonstrated with consideration for the real intermolecular interactions and the structuring in the absorbent solution. The composition and structure of individual aqueous monoethanolamine solutions with various concentrations and of the same solutions saturated with carbon dioxide were examined. The methods of viscometry and conductometry demonstrated that, at monoethanolamine concentrations exceeding 12 ± 2 wt %, micelles are formed on the background of the existence of associates with intermolecular hydrogen bonds. This necessitates use of high temperatures (120‒140°C) in the stage of carbon dioxide desorption. It was found that using a 12 wt % aqueous solution of monoethanolamine in purification of gas mixtures makes it possible to lower the desorption temperature of carbon dioxide to 90°C. This process is more efficient than the standard technology of CO2 removal from a 30 wt % monoethanolamine solution. This is so because, in addition to a lower expenditure of heat, the extraction of carbon dioxide grows by 16% at a simultaneous decrease in the absorbent expenditure by at least a factor of 2.5.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rochelle, G.T., Science, 2009, vol. 325, pp. 1652–1654.CrossRefPubMedGoogle Scholar
  2. 2.
    US Patent. 1 783 901 (publ. 1930).Google Scholar
  3. 3.
    Bailey, B.W. and Feron, P.H.M., OGST, 2005, vol. 60, pp. 461–474.Google Scholar
  4. 4.
    Liang, Z., Rongwong, W., Liu, H., et al., Int. J. Greenh. Gas Con., 2015, vol. 40, pp. 26–54.CrossRefGoogle Scholar
  5. 5.
    Sreenivasulu, B., Gayatri, D.V., Sreedhar, I., and Raghavan, K.V., Renewable Sustainable Energy Rev., 2015, vol. 41, pp. 1324–1350.CrossRefGoogle Scholar
  6. 6.
    Mangalapally, H.P., Notz, R., Asprion, N., et al., Int. J. Greenh. Gas Con., 2012, vol. 8, pp. 205–216.CrossRefGoogle Scholar
  7. 7.
    Abu–Zahra, M.R.M., Niederer, J.P.M., Feron, P.H.M., Versteeg, G.F., Int. J. Greenh. Gas Con., 2007, vol. 1, pp. 135–142.CrossRefGoogle Scholar
  8. 8.
    Vakk, E.G., Shuklin, G.V., Leites, I.L., Poluchenie tekhnologicheskogo gaza dlya proizvodstva ammiaka, metianola, vodoroda i vysshikh uglevodorodov, Moscow: OOO «Galleya–print», 2011. 480 s.Google Scholar
  9. 9.
    Davis, J. and Rochelle, G., Energy Procedia, 2009, vol. 1, pp. 327–333.CrossRefGoogle Scholar
  10. 10.
    Dumee L., Scholes C., Stevens G., Kentish S., Int. J. Greenhouse Gas Control, 2012, vol. 10, pp. 443–455.CrossRefGoogle Scholar
  11. 11.
    Thompson, J.G., Frimpong, R., Remias, J.E., et al., AAQR, 2014, vol. 14, pp. 550–558.Google Scholar
  12. 12.
    Chi, S. and Rochelle, G.T., Ind. Eng. Chem. Res., 2002, vol. 41, pp. 4178–4186.CrossRefGoogle Scholar
  13. 13.
    Voice, A.K. and Rochelle, G.T., Int. J. Greenhouse Gas Control, 2013, vol. 12, pp. 472–477.CrossRefGoogle Scholar
  14. 14.
    US Patent 5 268 155A (publ. 1993).Google Scholar
  15. 15.
    US Patent 6 517 700 V2 (publ. 2003).Google Scholar
  16. 16.
    Strathmann, H., Desalination, 2010, vol. 264, pp. 268–288.CrossRefGoogle Scholar
  17. 17.
    Galizia, M., Benedetti, F.M., Paul, D.R., and Freeman, B.D., J. Membr. Sci., 2017, vol. 535, pp. 132–142.CrossRefGoogle Scholar
  18. 18.
    Moser, P., Schmidt, S., and Stahl, K., Energy Procedia, 2011, vol. 4, pp. 473–479.CrossRefGoogle Scholar
  19. 19.
    Wang, T., Hovland, J., and Jens, K.J., J. Environ. Sci., 2015, vol. 27, pp. 276–289.CrossRefGoogle Scholar
  20. 20.
    Zabolotskii, V.I., Gnusin, N.P., Pis’menskii, V.F., and Omel’chenko, Yu.N., Zh. Prikl. Khim., 1982, vol. 55, no. 5, pp. 1105–1110.Google Scholar
  21. 21.
    Vasilevskii, V.P., Novitskii, E.G., and Volkov, V.V., Membrany, 2010, vol. 48, pp. 26–28.Google Scholar
  22. 22.
    Touhara, H., Okazaki, S., Okino, F., et al., J. Chem. Thermodyn., 1982, vol. 14, pp. 145–156.CrossRefGoogle Scholar
  23. 23.
    Novitskii, E.G., Vasilevskii, V.P., Grushevenko, E.A., et al., Elektrokhimiya, 2017, vol. 53, no. 4, pp. 445–451.Google Scholar
  24. 24.
    Haynes, W.M., Bruno, T.J., and Lide, D.R., CRC Handbook of Chemistry and Physics–Internet Version; Boca Raton, FL.: CRC PressTaylor and Francis, 2016.Google Scholar
  25. 25.
    Viswanath, D.S., Ghosh, T.K., Prasad, D.H.L., et al., Viscosity of Liquids. Theory, Estimation, Experiment, and Data, Springer: Netherlands, 2007.Google Scholar
  26. 26.
    Balabaev, N.K., Belashchenko, D.K., Rodnikova, M.N., et al., Russ. J. Phys. Chem., 2015, vol. 89, no. 3, pp. 398–405.CrossRefGoogle Scholar
  27. 27.
    Myers, D., Surfaces, Interfaces, and Colloids: Principles and Applications, New York: John Wiley & Sons, Inc., 2nd ed., 1999.CrossRefGoogle Scholar
  28. 28.
    Caplow, M., JACS, 1968, vol. 90, pp. 6795–6803.CrossRefGoogle Scholar
  29. 29.
    Danckwerts, P.V., CES, 1979, vol. 34, pp. 443–446.CrossRefGoogle Scholar
  30. 30.
    Crooks, J.E. and Donnellan, J.P., J. Chem. Soc., Perkin Trans. 1, 1989, vol. 4, pp. 331–333.CrossRefGoogle Scholar
  31. 31.
    Hunt, A.J., Sin, E.H.K., Mariott, R., and Clark, J.H., ChemSusChem, 2010, vol. 3, no. 3, pp. 306–322.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang, T., Hovland, J., Jens, K.J., J. Environ. Sci., 2015, vol. 27, pp. 276–289.CrossRefGoogle Scholar
  33. 33.
    Bihong, L., Guo, B., Zhou, Z., and Jing, G., Environ. Sci. Technol., 2015, vol. 49, pp. 10728–10735.CrossRefGoogle Scholar
  34. 34.
    Blauwhoff, P.P.M., Versteeg, G.F., and Swaaij, W.P.M., CES, 1984, vol. 39, pp. 207–225.CrossRefGoogle Scholar
  35. 35.
    Versteeg, G.F., Van Duck, L.A.J., and Van Swaau, W.P.M., Chem. Eng. Commun., 1996, vol. 144, pp. 113–158.CrossRefGoogle Scholar
  36. 36.
    Sun, C. and Dutta, P.K., Ind. Eng. Chem. Res., 2016, vol. 55, pp. 6276–6283.CrossRefGoogle Scholar
  37. 37.
    Richner, G. and Puxty, G., Ind. Eng. Chem. Res., 2012, vol. 51, pp. 14317–14324.CrossRefGoogle Scholar
  38. 38.
    US Patent 2013 0 206000. A1 (publ. 2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. G. Novitskii
    • 1
    Email author
  • V. P. Vasilevskii
    • 1
  • V. I. Vasil’eva
    • 2
  • E. A. Goleva
    • 2
  • E. A. Grushevenko
    • 1
  • A. V. Volkov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations