Skip to main content

Advertisement

Log in

Experimental Scale Photocatalytic Oxidation SO2 from Simulated Flue Gas in the Presence of Mn/Copper Slag as a Novel Nanocatalyst: Optimizations by Hybrid Box-Behnken Experimental Design and Genetic Algorithm

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

One of the most important air pollutants from simulated flue gas is sulfur dioxide (SO2). In this work, experimental scale photocatalytic oxidation of SO2 as a new method was suggested on the liquid phase using manganese supported on copper slag (Mn/CS) under ultraviolet (UV) irradiation. Mn/CS recognized as novel nanocatalyst for photocatalytic oxidation of SO2 from simulated flue gas. In this study, a column packed photocatalytic reactor (CPPCR) was applied. Firstly, the Mn/CS was perpetrated by impregnation method. Analysis of X-ray diffraction (XRD), field scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and FTIR, were used for detection structure, morphology, size of a particle of Mn/CS nanocatalyst. FESEM analysis revealed that the manganese nanoparticles were well incorporated into the copper slag as a base. Hybrid genetic algorithm (GA) and Box–Behnken design (BBD) was used for optimization of variables, such as gas flow rate, temperature, reaction time, and SO2 concentration. The most effective SO2 removal achieved at the operating conditions was about 99%. Analysis of the optimization of BBD combined with GA showed that the BBD method alone is also acceptable for optimizing the SO2 oxidation process in laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H., and You, C., Chem. Eng. J., 2016, vol. 292, pp. 199–206.

    Article  CAS  Google Scholar 

  2. Liu, Y., Zhang, J., Sheng, C., Zhang, Y., and Zhao, L., Chem. Eng. J., 2010, vol. 162, no. 3, pp. 1006–1011.

    Article  CAS  Google Scholar 

  3. Dou, B., Pan, W., Jin, Q., Wang, W., and Li, Y., Energy Convers. Manag., 2009, vol. 50, no. 10, pp. 2547–2553.

    Article  CAS  Google Scholar 

  4. Hao, R., Zhao,Y., Yuan, B., Zhou, S., and Yang, S., J. Hazard. Mater., 2016, vol. 318, pp. 224–232.

    Article  CAS  PubMed  Google Scholar 

  5. Sun, C., Zhao,N., Zhuang, Z., et al., J. Hazard. Mater., 2014, vol. 274, no. 866, pp. 376–383.

    Article  CAS  PubMed  Google Scholar 

  6. Darake, S., Hatamipour, M.S., Rahimi, A., and Hamzeloui, P., Chem. Eng. Res. Des., 2016, vol. 109, pp. 180–189.

    Article  CAS  Google Scholar 

  7. Comninellis, C., Kapalka, A., Malato, S., et al., J. Chem. Technol. Biotechnol., 2008, vol. 83, pp. 769–776.

    Article  CAS  Google Scholar 

  8. Almomani, F.A., Bhosale, R.R., Kumar, A., and Kennes, C., Sol. Energy, 2016, vol. 135, pp. 348–358.

    Article  CAS  Google Scholar 

  9. Wu, Z., Wang, H., Liu, Y., et al., Chem. Eng. J., 2008, vol. 144, pp. 221–226.

    Article  CAS  Google Scholar 

  10. Mahamuni, N.N. and Adewuyi, Y.G., Ultrason Sonochemistry, 2010, vol. 17, pp. 990–1003.

    Article  CAS  Google Scholar 

  11. Bao, J., Dai, Y., Liu, H., and Yang, L., Int. J. Hydrogen Energy., 2016, vol. 41,no. 35, pp. 15688–15695.

    Article  CAS  Google Scholar 

  12. Lin, Y.H., Tseng, T.K., and Chu, H., Applied Catal. A, Gen., 2014, vol. 469, pp. 221–228.

    Article  CAS  Google Scholar 

  13. Liu, Y.X and Zhang, J., Ind. Eng. Chem. Res., 2011, vol. 50, pp. 3836–3841.

    Article  CAS  Google Scholar 

  14. Cheng, M., Zeng, G., Huang D., et al., Chem. Eng. J., 2016, vol. 284, pp. 582–598.

    Article  CAS  Google Scholar 

  15. Nasonova, A. and Kim, K.S., Catal. Today., 2013, vol. 211, pp. 90–95.

    Article  CAS  Google Scholar 

  16. Huanosta-gutierrez, T., Dantas, R.F., Ramirez-Zamora, R.M., and Esplugas, S., J. Hazard Mater., 2012, vols. 213, 214, pp. 325–330.

    Article  CAS  Google Scholar 

  17. Benzinger, W., Wenka, A., and Dittmeyer, R., Applied Catal. A, Gen., 2011, vol. 397, nos. (1–2), pp. 209–217.

    Article  CAS  Google Scholar 

  18. Zhang, F., Hu, J., Yang, B and Yu, Y., Adv. Mat. Res., 2013, vols. 724–725, pp. 313–318.

    Google Scholar 

  19. Gorai, B. and Jana, R.K., Resour Conserv. Recy., 2003, vol. 39, pp. 299–313.

    Article  Google Scholar 

  20. Deng, S., Hu, J., Wang, H., et al., Adv. Mat. Res., 2013, vols. 634–638, pp. 479–489.

    Google Scholar 

  21. Kukovecz, A., Mehn, D., Nemes-Nagy, E., et al., Carbon, 2005, vol. 43, pp. 2842–2849.

    Article  CAS  Google Scholar 

  22. Tak, B.Y., Tak, B.S., Kim, Y.J., et al., J. Ind. Eng. Chem., 2015, vol. 28, pp. 307–315.

    Article  CAS  Google Scholar 

  23. Mohammadzadeh, A., Ramezani, M., and Ghaedi, A.M., J. Taiwan Inst. Chem. Eng., 2016, vol. 59, pp. 275–284.

    Article  CAS  Google Scholar 

  24. Shi, J., Yao, L., and Hu, C., J. Energy Chem., 2015, vol. 24, pp. 394–400.

    Article  Google Scholar 

  25. Garcia-Martinez, J., Cazorla-Amoros, D., and Linares-Solano, A., Appl. Catal. B, Environ., 2004, vol. 47, pp. 203–207.

    Article  CAS  Google Scholar 

  26. Liu, Y., Wang, Q., and Zhang, J., Int. J. Coal Geol., 2017, vol. 170, pp. 41–47.

    Article  CAS  Google Scholar 

  27. Su, C., Ran, X., Hu, J., and Shao, C., Environ. Sci. Technol., 2013, vol. 47, pp. 11562–11568.

    Article  CAS  PubMed  Google Scholar 

  28. Kim, H.H., Wu, C., Kinoshita, Y., et al., IEEE Trans. Ind. Appl., 2001, vol. 37, no. 2, pp. 480–487.

    Article  CAS  Google Scholar 

  29. Zhao, C., Liu, J., Li, X., et al., J. Mol. Liq., 2016, vol. 221, pp. 156–165.

    Article  CAS  Google Scholar 

  30. Li, M., Feng, C., Zhang, Z., et al., Electrochim. Acta, 2010, vol. 56, pp. 265–270.

    Article  CAS  Google Scholar 

  31. Sharma, N., Khanna, R., and Dev, R., Eng. Sci. Technol. & Int. J., 2015, vol. 18, pp. 171–177.

    Article  Google Scholar 

  32. Sodeifian, G., Sajadian, S.A., and Ardestani, N.S., J. Taiwan Inst. Chem. Eng., 2016, vol. 60, pp. 165–173.

    Article  CAS  Google Scholar 

  33. Zaki, R.M., Varshosaz, J., and Fathi, M., Carbohydr. Polym., 2015, vol. 122, pp. 314–320.

    Article  CAS  PubMed  Google Scholar 

  34. Fayyazi, E., Ghobadian, B., Najafi, G., et al., Ultrason.–Sonochemistry, 2015, vol. 26, pp. 312–320.

    Article  CAS  Google Scholar 

  35. Khorsand Zak, A., Majid, W.H.A., Ebrahimizadeh Abrishami, M., et al., Solid State Sci., 2012, vol. 14, pp. 488–494.

    Article  CAS  Google Scholar 

  36. Mihailova, I. and Mehandjiev, D., J. Univ. Chem. Technol. Metall., 2010, vol. 45, no. 3, pp. 317–326.

    CAS  Google Scholar 

  37. Ji, S., Xiao, T., Li, S., et al., J. Catal., 2003, vol. 220, pp. 47–56.

    Article  CAS  Google Scholar 

  38. Bailey, J.R. and Mcguire, M.M., Langmuir, 2007, vol. 17, pp. 10995–10999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mahanpoor.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiee, F., Mahanpoor, K. Experimental Scale Photocatalytic Oxidation SO2 from Simulated Flue Gas in the Presence of Mn/Copper Slag as a Novel Nanocatalyst: Optimizations by Hybrid Box-Behnken Experimental Design and Genetic Algorithm. Russ J Appl Chem 91, 687–700 (2018). https://doi.org/10.1134/S1070427218040237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218040237

Navigation