Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 4, pp 602–610 | Cite as

Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts

  • E. A. Grushevenko
  • S. D. Bazhenov
  • V. P. Vasilevskii
  • E. G. Novitskii
  • A. V. Volkov
Processes and Equipment of Chemical Industry

Abstract

Electrodialysis technology was adapted to removal of heat stable salts from aqueous solutions of alkanolamine absorbents, with monoethanolamine as example. Removal of anions of heat stable salts by electrodialysis from a 30 wt % aqueous solution of monoethanolamine with the degree of carbonation of 0.2 mol of CO2 per mole of monoethanolamine was studied. The two-step removal of heat stable salts by electrodialysis allows the monoethanolamine loss to be reduced and the concentration of residual CO2 in the absorbent solution to be decreased. The suggested two-step electrodialysis treatment scheme allows the concentration of heat stable salts to be maintained on the required level from the viewpoint of their corrosion activity, the total volume of the concentrate to be decreased by 50%, and the monoethanolamine loss to be decreased by 30%. The treatment unit with the circulation volume of the monoethanol absorbent of 100 m3 h–1 was calculated for confirming the efficiency of the two-step electrodialysis treatment scheme. As compared to the one-step electrodialysis treatment scheme, the two-step scheme ensures recovery of 50% of monoethanolamine at the same efficiency of the removal of heat stable salts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radman, R., Aouissi, A., Al Kahtani, A., and Mekhamer, W., Petrol. Chem., 2017, vol. 57, no. 1, pp. 79–84.CrossRefGoogle Scholar
  2. 2.
    Krylov, O.V. and Mamedov, A.Kh., Russ. Chem. Rev., 1995, vol. 64, no. 9, pp. 877–900.CrossRefGoogle Scholar
  3. 3.
    Gerzeliev, I.M., Usachev, N.Ya., Popov, A.Yu., and Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 6, pp. 411–417.CrossRefGoogle Scholar
  4. 4.
    Kargari, A. and Ravanchi, M.T., Greenhouse Gases—Capturing, Utilization, and Reduction, Liu, G., Ed., New York: InTech, 2012, pp. 3–30.Google Scholar
  5. 5.
    Carbon Dioxide Recovery and Utilization, Aresta, M., Ed., Luxemburg: Springer, 2013.Google Scholar
  6. 6.
    Pisarenko, E.V., Pisarenko, V.N., Abaskuliev, D.A., and Minigulov, R.M., Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 12–18.CrossRefGoogle Scholar
  7. 7.
    Solov’ev, S.A., Zatelepa, R.N., Gubaren, E.V., et al., Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1883–1887.CrossRefGoogle Scholar
  8. 8.
    Lyadov, A.S. and Khadzhiev, S.N., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1727–1737.CrossRefGoogle Scholar
  9. 9.
    Kumeeva, T.Y., Prorokova, N.P., Kholodkov, I.V., et al., Russ. J. Appl. Chem., 2012, vol. 85, no. 1, pp. 144–149.CrossRefGoogle Scholar
  10. 10.
    Sovizi, M.R. and Dehghani, H., Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 2084–2090.CrossRefGoogle Scholar
  11. 11.
    International Energy Agency Statistics. CO2 Emissions from Fuel Combustion—Highlights, Paris: IEA, 2015.Google Scholar
  12. 12.
    http://so-ups.ru/index.php?id=ees (visited Febr. 13, 2018).
  13. 13.
    Liang, Z.H., Rongwong, W., Liu, H., et al., Int. J. Greenhouse Gas Contr., 2015, vol. 40, pp. 26–54.CrossRefGoogle Scholar
  14. 14.
    Ben-Mansour, R., Habib, M.A., Bamidele, O.E., et al., Appl. Energy, 2016, vol. 161, pp. 225–255.CrossRefGoogle Scholar
  15. 15.
    Naletov, V.A., Lukyanov, V.L., Kulov, N.N., et al., Theor. Found. Chem. Eng., 2014, vol. 48, no. 3, pp. 312–319.CrossRefGoogle Scholar
  16. 16.
    White, L.S., Wei, X., Pande, S., et al., J. Membr. Sci., 2015, vol. 496, pp. 48–57.CrossRefGoogle Scholar
  17. 17.
    Bazhenov, S.D. and Lyubimova, E.S., Petr. Chem., 2016, vol. 56, no. 10, pp. 889–914.CrossRefGoogle Scholar
  18. 18.
    Wang, M., Joel, A.S., Ramshaw, C., et al., Appl. Energy, 2015, vol. 158, pp. 275–291.CrossRefGoogle Scholar
  19. 19.
    Rochelle, G.T., Science, 2009, vol. 325, no. 5948, pp. 1652–1654.CrossRefPubMedGoogle Scholar
  20. 20.
    Vakk, E.G., Shuklin, G.V., and Leites, I.L., Poluchenie tekhnologicheskogo gaza dlya proizvodstva ammiaka, metanola, vodoroda i vysshikh uglevodorodov (Preparation of Process Gas for Production of Ammonia, Methanol, Hydrogen, and Higher Hydrocarbons), Moscow, 2011.Google Scholar
  21. 21.
    Gouedard, C., Picq, D., Launay, F., and Carrette, P.L., Int. J. Greenhouse Gas Contr., 2012, vol. 10, pp. 244–270.CrossRefGoogle Scholar
  22. 22.
    Verma, N. and Verma, A., Fuel Process. Technol., 2009, vol. 90, no. 4, pp. 483–489.CrossRefGoogle Scholar
  23. 23.
    Rao, A.B. and Rubin, E.S., ES&T, 2002, vol. 36, pp. 4467–4475.CrossRefGoogle Scholar
  24. 24.
    RF Patent 2487113, Publ. 2013.Google Scholar
  25. 25.
    ElMoudir, W., Supap, T., Saiwan, C., et al., Carbon Manag., 2012, vol. 3, no. 5, pp. 485–509.CrossRefGoogle Scholar
  26. 26.
    Wang, T., Hovland, J., and Jens, K.J., J. Environ. Sci., 2015, vol. 27, pp. 276–289.CrossRefGoogle Scholar
  27. 27.
    Volkov, A., Vasilevsky, V., Bazhenov, S., et al., Energy Proc., 2014, vol. 51, pp. 148–153.CrossRefGoogle Scholar
  28. 28.
    Strathmann, H., Desalination, 2010, vol. 264, no. 3, pp. 268–288.CrossRefGoogle Scholar
  29. 29.
    Dumée, L., Scholes, C., Stevens, G., and Kentish, S., Int. J. Greenhouse Gas Contr., 2012, vol. 10, pp. 443–455.CrossRefGoogle Scholar
  30. 30.
    Lim, J., Aguiar, A., Scholes, C.A., et al., Ind. Eng. Chem. Res., 2014, vol. 53, no. 49, pp. 19313–19321.CrossRefGoogle Scholar
  31. 31.
    Lim, J., Aguiar, A., Reynolds, A., et al., Int. J. Greenhouse Gas Contr., 2015, vol. 42, pp. 545–553.CrossRefGoogle Scholar
  32. 32.
    Bazhenov, S., Vasilevsky, V., Rieder, A., et al., Energy Proc., 2014, vol. 63, pp. 6349–6356.CrossRefGoogle Scholar
  33. 33.
    Bazhenov, S., Rieder, A., Schallert, B., et al., Int. J. Greenhouse Gas Contr., 2015, vol. 42, pp. 593–601.CrossRefGoogle Scholar
  34. 34.
    Zabolotskii, V.I., Gnusin, N.P., Pis’menskii, V.F., et al., Zh. Prikl. Khim., 1982, vol. 55, no. 5, pp. 1105–1110.Google Scholar
  35. 35.
    Zabolotskii, V.I., Gnusin, N.P., El’nikova, L.F., and Omel’chemko, Yu.N., Zh. Prikl. Khim., 1985, vol. 58, no. 10, pp. 2396–2399.Google Scholar
  36. 36.
    Zabolotskii, V., Sheldeshov, N., and Melnikov, S., Desalination, 2014, vol. 342, pp. 183–203.CrossRefGoogle Scholar
  37. 37.
    Novitskii, E.G., Vasilevskii, V.P., Grushevenko, E.A., et al., Russ. J. Electrochem., 2017, vol. 53, no. 4, pp. 391–397.CrossRefGoogle Scholar
  38. 38.
    Novitsky, E.G., Vasilevsky, V.P., Bazhenov, S.D., et al., Petrol. Chem., 2014, vol. 54, no. 8, pp. 680–685.CrossRefGoogle Scholar
  39. 39.
    Zagorodny, A.A., Ion Exchange Materials. Properties and Applications, Oxford: Elsevier, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Grushevenko
    • 1
  • S. D. Bazhenov
    • 1
  • V. P. Vasilevskii
    • 1
  • E. G. Novitskii
    • 1
  • A. V. Volkov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations