Skip to main content
Log in

Pervaporation Properties of Film and Composite Membranes Based on an Interpolyelectrolyte Complex of Sulfonate-Containing Aromatic Copolyamide

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Film and composite membranes with a separating layer based on an interpolyelectrolyte complex of polyethylenimine and copolyamide, synthesized from isophthaloyl dichloride and two diamines, 4,4′-(2,2′-disulfonate sodium)diaminodiphenyl and 4,4′-(2,2′-disulfonate sodium)diaminodiphenylethylene, were prepared. Their mass-exchange properties in pervaporation separation of a water–isopropanol mixture were studied. The relationship between the degree of conversion in the interpolymer reaction and composition of the interpolyelectrolyte complexes, on the one hand, and membrane characteristics, on the other hand, was revealed. The interpolyelectrolyte complexes of nonstoichiometric composition, enriched in the sulfonate-containing aromatic copolyamide, show the highest performance in pervaporation separation of water–alcohol mixtures. The infl uence of the copolyamide composition on the separation characteristics of the membranes was considered. Combination of good mechanical and mass-exchange properties allows the sulfonate-containing aromatic copolyamides to be classed with promising polyanion components for interpolyelectrolyte complexes used in hydrophilic pervaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Membrany i membrannye tekhnologii (Membranes and Membrane Technologies), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2013.

  2. Ramaswamy, Sh., Huang, H.-J., and Ramarao, B.V., Separation and Purification Technologies in Biorefineries, New York: Wiley, 2013.

    Book  Google Scholar 

  3. Volkov, V.V., Russ. Chem. Bull., 1994, vol. 43, no. 2, pp. 187–198.

    Article  Google Scholar 

  4. Shao, P. and Huang, R.Y.M., J. Membr. Sci., 2007, vol. 287, pp. 162–179.

    Article  CAS  Google Scholar 

  5. Polyakov, A.M. and Solov’ev, S.A., Membrany, 2006, no. 2 (30), pp. 22–26.

    Google Scholar 

  6. Zhang, G., Yan, H., Ji, Sh., et al., J. Membr. Sci., 2007, vol. 292, pp. 1–8.

    Article  CAS  Google Scholar 

  7. Hu, Ch., Guo, R., Li, B., et al., J. Membr. Sci., 2007, vol. 293, pp. 142–150.

    Article  CAS  Google Scholar 

  8. Kim, S.-G., Lee, K.-S., and Lee, K.-H., J. Appl. Polym. Sci., 2007, vol. 103, no. 4, pp. 2634–2641.

    Article  CAS  Google Scholar 

  9. Zhang, P., Qian, J., Yang, Y., et al., J. Membr. Sci., 2008, vol. 320, pp. 73–77.

    Article  CAS  Google Scholar 

  10. Zhao, Q., Qian, J.-W., and An, Q.-F., J. Membr. Sci., 2008, vol. 320, pp. 8–12.

    Article  CAS  Google Scholar 

  11. Zhao, Q., Qian, J.-W., An, Q.-F., et al., J. Membr. Sci., 2009, vol. 329, pp. 175–182.

    Article  CAS  Google Scholar 

  12. Zhao, Q., Qian, J.-W., An, Q.-F., et al., J. Membr. Sci., 2010, vol. 346, pp. 335–343.

    Article  CAS  Google Scholar 

  13. Jin, H., An, Q.-F., Zhao, Q., et al., J. Membr. Sci., 2010, vol. 347, pp. 183–192.

    Article  CAS  Google Scholar 

  14. Xu, J., Gao, C., and Feng, X., J. Membr. Sci., 2010, vol. 352, pp. 197–204.

    Article  CAS  Google Scholar 

  15. Wang, N., Zhang, G., Ji, Sh., et al., J. Membr. Sci., 2010, vol. 354, pp. 14–22.

    Article  CAS  Google Scholar 

  16. Liu, T., An, Q.-F., Zhao, Q., et al., J. Membr. Sci., 2013, vol. 429, pp. 181–189.

    Article  CAS  Google Scholar 

  17. Chen, J.-H., Zheng, J.-Zh., Liu, Q.-L., et al., J. Membr. Sci., 2013, vol. 429, pp. 206–213.

    Article  CAS  Google Scholar 

  18. Wang, X.-S., An, Q.-F., Liu, T., et al., J. Membr. Sci., 2014, vol. 452, pp. 73–81.

    Article  CAS  Google Scholar 

  19. Wang, X.-S., Ji, Y.-L., Zheng, P.-Y., et al., J. Mater. Chem. A, 2015, vol. 3, pp. 7296–7303.

    Article  CAS  Google Scholar 

  20. Kirsh, Yu.E., Vdovin, P.A., Fedotov, Yu.A., et al., Polym. Sci., Ser. B, 1997, vol. 39, nos. 5–6, pp. 189–193.

    Google Scholar 

  21. Smirnova, N.N. and Fedotov, Yu.A., Membrany, 2004, no. 1 (21), pp. 29–34.

    Google Scholar 

  22. Huang, Sh.-H., Liu, Yu-Y., Huang, Y.-H., et al., J. Membr. Sci., 2014, vol. 470, pp. 411–420.

    Article  CAS  Google Scholar 

  23. Fedotov, Yu.A. and Smirnova, N.N., Plast. Massy, 2008, no. 8, pp. 18–21.

    Google Scholar 

  24. Zundel, G., Hydration and Intermolecular Interaction. Infrared Investigations with Polyelectrolyte Membranes, New York: Academic, 1969.

    Google Scholar 

  25. Smirnova, N.N., Fedotov, Yu.A., and Kirsh, Yu.E., Membrany, 2000, no. 8, pp. 17–20.

    Google Scholar 

  26. Smirnova, N.N. and Volkov, V.I., Russ. J. Appl. Chem., 2015, vol. 88, no. 3, pp. 480–487.

    Article  CAS  Google Scholar 

  27. Kirsh, Yu.E., Vdovin, P.A., Fedotov, Yu.A., et al., Polym. Sci., Ser. A, 1996, vol. 38, no. 2, pp. 209–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Smirnova.

Additional information

Original Russian Text © N.N. Smirnova, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 3, pp. 364−371.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, N.N. Pervaporation Properties of Film and Composite Membranes Based on an Interpolyelectrolyte Complex of Sulfonate-Containing Aromatic Copolyamide. Russ J Appl Chem 91, 404–411 (2018). https://doi.org/10.1134/S1070427218030102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218030102

Navigation