Skip to main content
Log in

Thermodynamic Analysis and Kinetics of Etching of Thin PbS Films in Hydrochloric Acid Solutions

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A hydrochloric acid solution of hydrogen peroxide was suggested for etching lead sulfide films. The solubility of lead sulfide in relation to the hydrochloric acid concentration in the etching solution was calculated using thermodynamic analysis, taking into account the stability of lead complex species. The kinetics of hydrogen peroxide decomposition in the hydrochloric acid solution was studied, and the formal rate equation of the process was constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleshin, A.N., Burlak, A.V., Mandel’, V.E., et al., Fotonika, 1999, no. 8, pp. 111–114.

    Google Scholar 

  2. Kouissa, S., Djemel, A., Aida, M.S., et al., Sens. Transducers, 2015, vol. 193, no. 10, pp. 106–113.

    CAS  Google Scholar 

  3. Shnaider, A.V., Mironov, M.P., Gusel’nikov, A.V., et al., Pozharovzryvobezopasnost’, 2008, vol. 17, no. 2, pp. 74–76.

    Google Scholar 

  4. Markov, V.F., Maskaeva, L.N., Shnaider, A.V., et al., Tekhnosf. Bezopasn., 2015, vol. 1, no. 6, pp. 32–37.

    Google Scholar 

  5. Markov, V.F. and Maskaeva, L.N., J. Anal. Chem., 2001, vol. 56, no. 8, pp. 754–757.

    Article  CAS  Google Scholar 

  6. Zarubin, I.V., Markov, V.F., Maskaeva, L.N., et al., J. Anal. Chem., 2017, vol. 72, no. 3, pp. 327–332.

    Article  CAS  Google Scholar 

  7. Spivak, Yu.M., Mjakin, S.V., Moshnikov, V.A., et al., J. Nanomater., 2016, vol. 2016, p. 2629582.

    Article  CAS  Google Scholar 

  8. Boltovets, N.S., Borisenko, A.G., Ivanov, V.N., et al., Tekhnol. Konstr. Elektron. Appar., 2009, no. 5, pp. 45–48.

    Google Scholar 

  9. Burlakov, I.D., Boltar’, K.O., and Sednev, M.V., Prikl. Fiz., 2007, no. 5, pp. 59–62.

    Google Scholar 

  10. Svetlichnyi, A.M., Spiridonov, O.B., Linets, L.G., et al., Izv. Yuzhn. Fed. Univ., Tekh. Nauki, 2011, no. 4, pp. 102–108.

    Google Scholar 

  11. Barmashov, I., Elektronika: NTB, 2013, no. 2, pp. 143–145.

    Google Scholar 

  12. Khoroshko, L.S., Asharif, A.M., Orekhovskaya, T.I., et al., Dokl. Bel. Gos. Univ. Inform. Radioelektron., 2014, no. 3, pp. 101–105.

    Google Scholar 

  13. Cheng Huai-Yu, Jong Chao-An, Lee Chain-Ming, et al., IEEE Trans. Magn., 2005, vol. 41, no. 2, pp. 1031–1033.

    Article  CAS  Google Scholar 

  14. Tomashik, Z.F., Chukhnenko, P.S., Ivanitskaya, V.G., et al., Inorg. Mater., 2012, vol. 48, no. 2, pp. 114–118.

    Article  CAS  Google Scholar 

  15. Stepanova, L.I. and Dvorak, A.M. Izv. Nats. Akad. Nauk Bel., Ser. Khim. Nauk, 2012, no. 2, pp. 55–61.

    Google Scholar 

  16. Ignat’ev, A.I. and Tsygankova, E.V., Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt., 2006, no. 26, pp. 320–325.

    Google Scholar 

  17. Carns, T.K., Tanner, M.O., and Wang, K.L., J. Electrochem. Soc., 1995, vol. 142, no. 4, pp. 1260–1266.

    Article  CAS  Google Scholar 

  18. Stoffel, M., Malachias, A., Merdzhanova, T., et al., Semicond. Sci. Technol., 2008, vol. 23, p. 085021.

    Article  CAS  Google Scholar 

  19. Sebaai, F., Witters, L., Holsteyns, F., et al., Solid State Phenom., 2016, vol. 225, pp. 3–7.

    Article  Google Scholar 

  20. Baidakova, N.A., Verbus, V.A., Morozova, E.E., et al., Semiconductors, 2017, vol. 51, no. 12, pp. 1551–1556.

    Article  Google Scholar 

  21. Butler, J.N., Ionic Equilibrium, Boston: Addison-Wesley, 1973.

    Google Scholar 

  22. Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Lur’e, Yu.Yu., Ed., Moscow: Khimiya, 1971.

  23. Goncharov, E.G., Semenova, G.V., and Ugai, Ya.A., Khimiya poluprovodnikov (Chemistry of Semiconductors), Voronezh: Voronezhskii Univ., 1995.

    Google Scholar 

  24. Smirnova, Z.I., Maskaeva, L.N., Markov, V.F., et al., J. Mater. Sci. Techol., 2015, vol. 31, no. 8, pp. 790–797.

    Article  Google Scholar 

  25. Maskaeva, L.N., Forostyanaya, N.A., Markov, V.F., et al., Russ. J. Inorg. Chem., 2015, vol. 60, no. 5, pp. 552–559.

    Article  CAS  Google Scholar 

  26. Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment (Hydrochemical Deposition of Metal Sulfide Films: Simulation and Experiment), Yekaterinburg: Ural’skoe Otdel. Ross. Akad. Nauk, 2006.

    Google Scholar 

  27. Moro, V., Semiconductor Lithography: Principles, Practices, and Materials, New York: Plenum, 1988.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Tulenin.

Additional information

Original Russian Text © S.S. Tulenin, D.A. Novotorkina, M.S. Rogovoy, K.A. Karpov, A.V. Pozdin, L.N. Maskaeva, V.F. Markov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 3, pp. 319−327.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulenin, S.S., Novotorkina, D.A., Rogovoy, M.S. et al. Thermodynamic Analysis and Kinetics of Etching of Thin PbS Films in Hydrochloric Acid Solutions. Russ J Appl Chem 91, 360–367 (2018). https://doi.org/10.1134/S1070427218030023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218030023

Navigation