Skip to main content
Log in

Cycling Performance at Li7La3Zr2O12|Li Interface

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Cyclability of the Li|Li7La3Zr2O12 interface was tested by voltammetry under externally applied potential difference. It was found that the solid electrolyte synthesized in the study contains a minor amount of an impurity in the form of lithium carbonate. This impurity forms, when brought in contact with metallic lithium, carbon that pierces the whole volume of the ceramic separator and produces a channel for a flow of electrons through the material, which leads to a poor cyclability of the solid electrolyte. A possible way to solve the given problem is via a purposeful replacement of the carbonate in the intergrain space of Li7La3Zr2O12 with another crystalline or glassy plasticizer that possesses an acceptable unipolar lithium conductivity (no less than 10–6 S cm–1) and forms, when brought in contact with metallic lithium, no electrically conducting compound or a compound capable of reversibly intercalating/deintercalating lithium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etacheri, V., Marom, R., Elazari, R., et al., Energy Environ. Sci., 2011, vol. 4, pp. 3243–3262.

    Article  CAS  Google Scholar 

  2. Burmakin, E.I., Tverdye elektrolity s provodimost’yu po kationam shchelochnykh metallov (Solid Electrolytes with Conductivity by Alkali Metal Cations), Moscow: Nauka, 1992.

    Google Scholar 

  3. Ramakumar, S., Deviannapoorani, C., Dhivya, L., et al., Prog. Mater. Sci., 2017, vol. 88, pp. 325–411.

    Article  CAS  Google Scholar 

  4. Zeier, W.G., Royal Soc. Chem., 2014, vol. 43, pp. 16133–16138.

    CAS  Google Scholar 

  5. Buschmann, H., Dölle, J., Berendts, S., et al., Phys. Chem. Chem. Phys., 2011, vol. 13, no. 43, pp. 19378–19392.

    Article  CAS  Google Scholar 

  6. Murugan, R., Thangadurai, V., and Weppner, W., Angew. Chem. Int. Ed., 2007, vol. 46, pp. 7778–7781.

    Article  CAS  Google Scholar 

  7. Il’ina, E.A., Andreev, O.L., Antonov, B.D., et al., J. Power Sources, 2012, vol. 201, pp. 169–173.

    Article  Google Scholar 

  8. Awaka, J., Kijima, N., and Hayakawa, H., J. Solid State Chem., 2009, vol. 182, pp. 2046–2052.

    Article  CAS  Google Scholar 

  9. Geiger, C.A., Alekseev, E., Lazic, B., et al., Inorg. Chem., 2011, vol. 50, pp. 1089–1097.

    Article  CAS  Google Scholar 

  10. Cheng, L., Crumlin, E.J., Chen, W., et al., Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 18294–18300.

    Article  CAS  Google Scholar 

  11. Il’ina, E.A., Andreev, O.L., Antonov, B.D., et al., Mater. Res. Bull., 2014, vol. 53, pp. 32–37.

    Article  Google Scholar 

  12. Han, X., Gong, Y., Fu, K., et al., Nat. Mater., 2016, vol. 16, pp. 572–580.

    Article  Google Scholar 

  13. Damaskin, B.B., Printsipy sovremennykh metodov izucheniya elektrokhimicheskikh reaktsii (Principles of Modern Methods for Study of Electrochemical Reactions), Moscow: Mosk. Gos. Univ., 1965.

    Google Scholar 

  14. Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, KolosS, 2006, 2nd ed.

    Google Scholar 

  15. Electroanalytical Methods. Guide to Experiments and Applications, Scholz, F., Ed., Springer–Verlag, Berlin, 2010.

  16. O’Callaghan, M.P. and Cussen, E.J., Solid State Sci., 2008, vol. 39, pp. 390–395.

    Article  Google Scholar 

  17. Cussen, E.J., Chem. Commun., 2006, vol. 4, pp. 412–413.

    Article  Google Scholar 

  18. Handbook of Battery Materials, Besenhard, R., Ed., Wiley–VCH Verlag, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Druzhinin.

Additional information

Original Russian Text © K.V. Druzhinin, P.Yu. Shevelin, E.A. Il’ina, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 1, pp. 70−76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Druzhinin, K.V., Shevelin, P.Y. & Il’ina, E.A. Cycling Performance at Li7La3Zr2O12|Li Interface. Russ J Appl Chem 91, 63–69 (2018). https://doi.org/10.1134/S107042721801010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721801010X

Navigation