Skip to main content
Log in

Development and Study of Gas-Diffusion Cathodes in Cylindrical Cells of Air-Aluminum Electrochemical Generator

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Possibility of substantially improving the specific characteristics of the cell of an air-aluminum electrochemical generator by passing to its cylindrical design is demonstrated. This made it possible to raise the efficiency of aluminum utilization and to simplify the system that maintains the thermal balance of a cell and an array. It was found that, to reach the best parameters of a cylindrical cell of an air-aluminum electrochemical generator, it is necessary to fabricate gas-diffusion cathodes on the basis of the following factors: type of carbon black (Timcal), type of activated carbon (UAF), and relative amounts of hydrophobized carbon black and activated carbon in the active layer (2.5: 1). The results obtained in the study and the achieved characteristics of the air-aluminum electrochemical generator demonstrated that it is possible in principle to use this generator as a portable backup and emergency power source and also in power supply of urban electrically powered automobiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuk, A.Z., Kleimenov, B.V., Fortov, V.E., and Sheindlin, A.E., Elektromobil’ na alyuminievom toplive (Electric Vehicles Operating on Aluminum Fuel), Moscow: Nauka, 2012. p.171.

    Google Scholar 

  2. Rahman, Md.A., Wang, X., and Wen, C., J. Electrochem. Soc., 2013, vol. 160, pp. A1759–A1771.

    Article  CAS  Google Scholar 

  3. Yang, S. and Knickle, H., J. Power Sources, 2002, vol. 112, pp. 162–173.

    Article  CAS  Google Scholar 

  4. Li, Q. and Bjerrum, N.J., J. Power Sources, 2002, vol. 110, pp. 1–10.

    Article  CAS  Google Scholar 

  5. Egan, D.R., Ponce de Leon, C., Wood, R.J.K., et al., J. Power Sources, 2013, vol. 236, pp. 293–310.

    Article  CAS  Google Scholar 

  6. Zein El Abedin, S. and Saleh, A.O., J. Appl. Electrochem., 2004, vol. 34, pp. 331–335.

    Article  Google Scholar 

  7. Pino, M., Cuadrado, C., Chacon, J., et al., J. Appl. Electrochem., 2014, vol. 44, pp. 1371–1380.

    Article  CAS  Google Scholar 

  8. Cho, Y.J., Park, I.J., Lee, H.J., and Kim, J.G., J. Power Sources, 2015, vol. 277, pp. 370–378.

    Article  CAS  Google Scholar 

  9. Zhuk, A.Z., Sheindlin, A.E., Kleymenov, B.V., et al., J. Power Sources, 2006, vol. 157, pp. 921–926.

    Article  CAS  Google Scholar 

  10. Lee, J.S., Kim, S.T., Cao, R., et al., Adv. Energy Mater., 2011, vol. 1, pp. 34–50.

    Article  CAS  Google Scholar 

  11. Bruce, P.G., Freunberger, S.A., Hardwick, L.J., and Tarascon, J.-M., Nature Mater., 2012, vol. 11, no. 1, pp. 19–29.

    Article  CAS  Google Scholar 

  12. Bidault, F., Brett, D.J.L., Middleton, P.H., and Brandon, N.P., J. Power Sources, 2009, vol. 187, pp. 39–48.

    Article  CAS  Google Scholar 

  13. Cheng, F. and Chen, J., Chem. Soc. Rev., 2012, vol. 41, pp. 2172–2192.

    Article  CAS  Google Scholar 

  14. Chervin, C.N., Long, J.W., Brandell, N.L., et al., J. Power Sources, 2012, vol. 207, pp. 191–198.

    Article  CAS  Google Scholar 

  15. Zhu, A.L., Wang, H., Qu, W., et al., J. Power Sources, 2010, vol. 195, pp. 5587–5595.

    Article  CAS  Google Scholar 

  16. Davydova, E.S., Atamanyuk, I.N., Ilyukhin, A.S., et al., J. Power Sources, 2016, vol. 306, pp. 329–336.

    Article  CAS  Google Scholar 

  17. Oh, H.-S., Oh, J.-G., Lee, W.H., et al., Int. J. Hydrogen Energy, 2011, vol. 36, pp. 8181–8186.

    Article  CAS  Google Scholar 

  18. Zhurilova, M.A., Yanilkin, I.V., Kiseleva, E.A., et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2017, vol. 60, no. 4, pp. 82–87.

    Article  CAS  Google Scholar 

  19. Zhuk, A., Kleymenov, B., Zakharov, V., Chursin, A., and Kapustin, A., ISJAEE, 2012, vol. 4, pp. 108–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kiseleva.

Additional information

Original Russian Text © E.A. Kiseleva, A.Z. Zhuk, B.V. Kleimenov, V.G. Udal’tsov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 1, pp. 65−69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, E.A., Zhuk, A.Z., Kleimenov, B.V. et al. Development and Study of Gas-Diffusion Cathodes in Cylindrical Cells of Air-Aluminum Electrochemical Generator. Russ J Appl Chem 91, 58–62 (2018). https://doi.org/10.1134/S1070427218010093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218010093

Navigation