Skip to main content
Log in

ZnO Nanoparticle Functionalization by Organosilanes Catalyzed with Ethylene Diamine for Production of Stable Nanodispersions in Water

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A simple method that was used to obtain stabilized ZnO nanoparticles and their dispersions in water is presented. It yields anisotropic (trigonal prismatic) nanocrystals with dimensions below 50 nm. The Partial Profile Relaxation (PPR) technique was applied in the analysis of X-ray diffraction data with complex anisotropic broadening. Ethylene diamine catalyzed silanization was utilized for the covalent surface functionalization, which allowed us to obtain stable waterborne dispersions when aminosilanes were used. The difference in the surface structure of ZnO nanoparticles for different variants of functionalization was investigated by 29Si NMR spectroscopy. The combination of X-ray diffraction and dynamic light scattering data indicates minimal degree of particle agglomeration in the dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kablov, E.N., Innovatsii, 2007, no. 12, pp. 67–70.

    Google Scholar 

  2. Chursova, L.V., Kim, M.A., Panina, N.N., and Shvetsov, E.P., Aviats. Mater. Tekhnol., 2013, no. 1, pp. 40–47.

    Google Scholar 

  3. Kablov, E.N., Kondrashov, S.V., and Yurkov, G.Y., Nanotechnol. Russ., 2013, vol. 8, nos. 3–4, pp. 163–185.

    Article  Google Scholar 

  4. Aldoshin, S.M., Badamshina, E.R., and Kablov, E.N., Rosnanotekh 08, I Int. Symp. On Nanotechnologies, Abstract of papers of Sci.-Technol. Section, 2008, pp. 385–387.

    Google Scholar 

  5. Yurkov, G.Yu., Kondrashov, S.V., and Kraev, I.D., Aviats. Mater. Tekhnol., 2014, no. S2, pp. 29–33.

    Google Scholar 

  6. Gunyaev, G.M., Chursova, L.V., Komarova, O.A., and Gunyaeva, A.G., Aviats. Mater. Tekhnol., 2012, no. S, pp. 277–286.

    Google Scholar 

  7. Blanchard, V. and Blanchet, P., Bioresources, 2011, vol. 6 (2), pp. 1219–1229.

    CAS  Google Scholar 

  8. Kondrashov, E.K. and Malova, N.E., Aviats. Mater. Tekhnol., 2015, no. 2, pp. 39–44.

    Google Scholar 

  9. Zhang, L., Jiang, Y., Ding, Y., et al., J. Nanopart. Res., 2007, vol. 9, pp. 479–489.

    Article  Google Scholar 

  10. Brayner, R., Ferrari-Iliou, R., Brivois, N., et al., Nano Lett., 2006, vol. 6, pp. 866–870.

    Article  CAS  Google Scholar 

  11. Yamamoto, O., Int. J. Inorg. Mater., 2001, vol. 3 (7), pp. 643–646.

    Article  CAS  Google Scholar 

  12. Kuznetsova, V.A., Kondrashov, E.K., Semenova, L.V., and Kuznetsov, G.V., Materialovedenie, 2012, no. 12, pp. 12–14.

    Google Scholar 

  13. Kuznetsova, V.A., Deev, I.S., Kuznetsov, G.V., and Kondrashov, E.K., Zavod. Lab., Diagn. Mater., 2014, vol. 80 (5), pp. 35–39.

    CAS  Google Scholar 

  14. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  15. Kopylov, V.M., Ivanov, V.V., and Kovyazin, V.A., Klei, Germetiki, Tekhnol., 2006, no. 6, pp. 2–12.

    Google Scholar 

  16. Beari, F., Brand, M., Jenkner, P., et al., J. Organomet. Chem., 2001, vol. 625, pp. 208–216.

    Article  CAS  Google Scholar 

  17. Lisichkin, G.V., Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Moscow: Fizmatlit, 2003.

    Google Scholar 

  18. Derouet, D., Forgeard, S., Brosse, J.-C., et al., J. Polym. Sci. A, 1998, vol. 36, pp. 437–453.

    Article  CAS  Google Scholar 

  19. Bravaya, N.M., Galiullin, A.N., Saratovskikh, S.L., et al., J. Appl. Polym. Sci., 2016, vol. 134, pp. 44678.

    Google Scholar 

  20. Dhoke, S.K, Khanna, A.S., and Sinha, T.J.M., Progr. Org. Coat., 2009, vol. 64, pp. 371–382.

    Article  CAS  Google Scholar 

  21. Rashvand, M. and Ranjbar, Z., Progr. Org. Coat., 2013, vol. 76, pp. 1413–1417.

    Article  CAS  Google Scholar 

  22. Kablov, E.N., Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33.

    Google Scholar 

  23. Pal, U. and Santiago, P., J. Phys. Chem. B, 2005, vol. 109, pp. 15317–15321.

    Article  CAS  Google Scholar 

  24. Auffredic, J.P. and Louer, D., React. Solids, 1987, vol. 4, pp. 105–115.

    Article  CAS  Google Scholar 

  25. Mondelaers, D., Vanhoyland, G., Van den Rul, H., et al., Mater. Res. Bull., 2002, vol. 37, pp. 901–914.

    Article  CAS  Google Scholar 

  26. Balzar, D. and Popovic, S., J. Appl. Crystallogr., 1996, vol. 29, pp. 16–23.

    Article  CAS  Google Scholar 

  27. Cheary, R. and Coelho, A., J. Appl. Crystallogr., 1992, vol. 25, pp. 109–121.

    Article  CAS  Google Scholar 

  28. Izumi, F. and Ikeda, T., Mater. Sci. Forum, 2000, vols. 321–324, pp. 198–205.

    Article  Google Scholar 

  29. Krill, C.E. and Birringer, R., Phys. Mag. A., 1998, vol. 77, pp. 621–640.

    Article  CAS  Google Scholar 

  30. Sanchez-Bajo, F., Ortiz, A.L., and Cumbrera, F.L., Acta Mater., 2006, vol. 54, pp. 1–10.

    Article  CAS  Google Scholar 

  31. Young, R.A. and Sachtivel, A., J. Appl. Crystallogr., 1988, vol. 21, pp. 416–425.

    Article  CAS  Google Scholar 

  32. Leoni, M. and Scardi, P., J. Appl. Crystallogr., 2004, vol. 37, pp. 629–634.

    Article  CAS  Google Scholar 

  33. Grasset, F., Saito, N., Li, D., et al., J. Alloys Compd., 2003, vol. 360, pp. 298–311.

    Article  CAS  Google Scholar 

  34. Popa, N.C. and Balzar, D., J. Appl. Crystallogr., 2008, vol. 41, pp. 615–627.

    Article  CAS  Google Scholar 

  35. Bressy, C., Van Giang, N., Ziarelli, F., and Margaillan, A., Langmuir, 2012, vol. 28, pp. 3290–3297.

    Article  CAS  Google Scholar 

  36. Kotecha, M., Veeman, W., Rohe, B., and Tausch, M., Micropor. Mesopor. Mater., 2006, vol. 95, pp. 66–75.

    Article  CAS  Google Scholar 

  37. Hansen, S., J. Chem. Phys., 2004, vol. 121, pp. 9111–9115.

    Article  CAS  Google Scholar 

  38. MacKenzie, K.J.D. and Smith, M.E., Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials, Pergamon, 2002.

    Google Scholar 

  39. Posthumus, W., Magusin, P.C.M.M., Brokken-Zijp, J.C.M., et al., J. Colloid Interface Sci., 2004, vol. 269, pp. 109–116.

    Article  CAS  Google Scholar 

  40. Rohe, B., Veeman, W.S., and Tausch, M., Nanotechnology, 2006, vol. 17, pp. 277–282.

    Article  CAS  Google Scholar 

  41. Weintraub, B., Zhou, Z., Li, Y., and Deng, Y., Nanoscale, 2010, vol. 2, pp. 1573–1587.

    Article  CAS  Google Scholar 

  42. Zhang, Y., Ram, M.K., Stefanakos, E.K., and Goswami, D.Y., J. Nanomater., 2012, Article ID 624520.

    Google Scholar 

  43. Blitz, J.P., Murthy, R.S.S., and Leyden, D.E., J. Colloid Interface Sci., 1988, vol. 126, pp. 387–392.

    Article  CAS  Google Scholar 

  44. Blitz, J.P., Gun'ko, V.M., Samala, R., and Lawrence, B.A., Colloids Surf., A, 2014, vol. 462, pp. 1–8.

    Article  CAS  Google Scholar 

  45. Van Der Voort, P. and Vansant, E.F., J. Liq. Chromatogr. Relat. Technol., 1996, vol. 19, pp. 2723–2752.

    Article  Google Scholar 

  46. Kanan, S.M., Tze, W.T.Y., and Tripp, C.P., Langmuir, 2002, vol. 18, pp. 6623–6627.

    Article  CAS  Google Scholar 

  47. Kahn, M.L., Monge, M., Colliere, V., et al., Adv. Funct. Mater., 2005, vol. 15, pp. 458–468.

    Article  CAS  Google Scholar 

  48. Govender, K., Boyle, D.S., Kenway, P.B., and O’Brien, P., J. Mater. Chem., 2004, vol. 14, pp. 2575–2591.

    Article  CAS  Google Scholar 

  49. Chandrasekaran, P., Viruthagiri, G., and Srinivasan, N., J. Alloys Compd., 2012, vol. 540, pp. 89–93.

    Article  CAS  Google Scholar 

  50. Gao, X., Li, X., and Yu, W., J. Solid State Chem., 2005, vol. 178, pp. 1139–1144.

    Article  CAS  Google Scholar 

  51. Degen, A. and Kosec, M., J. Eur. Ceram. Soc., 2000, vol. 20, pp. 667–673.

    Article  CAS  Google Scholar 

  52. Wu, Y.L., Tok, A.I.Y., Boey, F.Y.C., et al., Appl. Surf. Sci., 2007, vol. 253, pp. 5473–5479.

    Article  CAS  Google Scholar 

  53. Gamble, L., Jung, L.S., and Campbell, C.T., Langmuir, 1995, vol. 11, pp. 4505–4514.

    Article  CAS  Google Scholar 

  54. Allen, C.G., Baker, D.J., Albin, J.M., et al., Langmuir, 2008, vol. 24 (23), pp. 13393–13398.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lobanov.

Additional information

Original Russian Text © M.V. Lobanov, E.B. Pomakhina, A.I. Rebrov, A.L. Krasovskiy, A.A. Yaroslavov, K.A. Shashkeev, B.Ph. Pavlyuk, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 1, pp. 45−54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, M.V., Pomakhina, E.B., Rebrov, A.I. et al. ZnO Nanoparticle Functionalization by Organosilanes Catalyzed with Ethylene Diamine for Production of Stable Nanodispersions in Water. Russ J Appl Chem 91, 40–48 (2018). https://doi.org/10.1134/S1070427218010068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218010068

Navigation