Advertisement

Russian Journal of Applied Chemistry

, Volume 90, Issue 12, pp 1982–1989 | Cite as

Influence of Mechanical Activation Parameters on the Aggregate Size, Texture, and Functional Composition of the Surface of Carbon Black

  • O. N. Baklanova
  • O. A. Knyazheva
  • A. V. Lavrenov
  • L. G. P’yanova
  • S. S. Puchkov
  • E. N. Kudrya
  • A. B. Arbuzov
  • N. S. Mitryaeva
  • G. S. Russkikh
Production of New Materials
  • 12 Downloads

Abstract

The influence of mechanical activation parameters (acceleration of milling bodies and activation time) on the morphology, texture, and functional composition of the surface of P514 and N375 carbon black was studied. Mechanical activation of carbon black leads to a decrease in the carbon black aggregate size and in the dibutyl phthalate adsorption and to an increase in the ash residue. Rubber stocks were prepared from SKMS-30 ARK rubber and mechanically activated carbon black, and their physicomechanical properties after vulcanization were determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zuev, V.P. and Mikhailov, V.V., Proizvodstvo sazhi (Production of Carbon Black), Moscow: Khimiya, 1970.Google Scholar
  2. 2.
    Plaksin, G.V., Baklanova, O.N., Lavrenov, A.V., and Likholobov, V.A., Solid Fuel Chem., 2014, vol. 48, no. 6, pp. 349–355.CrossRefGoogle Scholar
  3. 3.
    Likholobov, V.A., Surovikin, V.F., Plaksin, G.V., et al., Katal. Prom–sti., 2008, pp. 63–68.Google Scholar
  4. 4.
    Baklanova, O.N., Lavrenov, A.V., Knyazheva, O.A., et al., Khim. Inter. Ustoich. Razv., 2011, vol. 19, no. 1, pp. 23–30.Google Scholar
  5. 5.
    Gorbunova, O.V., Vasilevich, A.V., Baklanova, O.N., et al., Procedia Eng., 2015, vol. 113, p. 484.CrossRefGoogle Scholar
  6. 6.
    Nikonova, R.M., Larionova, N.S., Ladyanov, V.I., et al., J. Alloys Compd., 2016, vol. 682, p. 61.CrossRefGoogle Scholar
  7. 7.
    Baklanova, O.N., Drozdov, V.A., Lavrenov, A.V., et al., J. Alloys Compd., 2015, vol. 646, p. 145.CrossRefGoogle Scholar
  8. 8.
    Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods for Activation of Chemical Processes), Novosibirsk: Nauka, 1986.Google Scholar
  9. 9.
    Grigor’eva, T.F., Barinov, A.P., and Lyakhov, N.Z., Mekhanokhimicheskii sintez v metallicheskikh sistemakh (Mechanochemical Synthesis in Metal Systems), Novosibirsk, 2008.Google Scholar
  10. 10.
    Abramzon, A.A., Bocharov, V.V., and Gaevoi, G.M., Poverkhnostno-aktivnye veshchestva: Spravochnik (Surfactants: Handbook), Leningrad: Khimiya, 1979, p. 376.Google Scholar
  11. 11.
    Zueva, O.S., Makshakova, O.N., Idiyatullin, B.Z., et al., Russ. Chem. Bull., 2016, vol. 65, no. 5, pp. 1208–1215.CrossRefGoogle Scholar
  12. 12.
    Boehm, H.P., Carbon, 1994, vol. 32, p. 759.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. N. Baklanova
    • 1
  • O. A. Knyazheva
    • 1
    • 2
  • A. V. Lavrenov
    • 1
  • L. G. P’yanova
    • 1
    • 2
  • S. S. Puchkov
    • 1
  • E. N. Kudrya
    • 1
    • 2
  • A. B. Arbuzov
    • 1
  • N. S. Mitryaeva
    • 2
  • G. S. Russkikh
    • 2
  1. 1.Institute of Hydrocarbons Processing, Siberian BranchRussian Academy of SciencesOmskRussia
  2. 2.Omsk State Technical UniversityOmsk, RussiaRussia

Personalised recommendations