Russian Journal of Applied Chemistry

, Volume 90, Issue 12, pp 1961–1968 | Cite as

Preparation of Mesoporous γ-Al2O3 from Aluminum Hydroxide Peptized with Organic Acids

  • V. Yu. Tregubenko
  • I. E. Udras
  • A. S. Belyi
Production of New Materials


The relationships of the formation of aluminum oxide from aluminum hydroxide peptized with organic acids (propionic, maleic, malonic, tartaric) were studied. The pore structure parameters of the hydroxide samples and of aluminum oxide samples obtained from them are strongly influenced by acid peptization. The nature of the acid influences the extent of defectiveness of the γ-Al2O3 structure, manifested in the density of aluminum oxide, measured by helium pycnometry. The possibility and conditions for preparing mesoporous γ-Al2O3 suitable for use in chemical and petrochemical processes were determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lamberov, A.A., Levin, O.V., Egorova, S.P., et al., Russ. J. Appl. Chem., 2003, vol. 76, no. 3, pp. 351–357.CrossRefGoogle Scholar
  2. 2.
    Petrovic, R., Milonjic, S., and Jokanovic, V., Powder Technol., 2003, vol. 133, pp. 185–189.CrossRefGoogle Scholar
  3. 3.
    Jiao, W.Q., Wang, Y.M., and He, M.-Y., Micropor. Mesopor. Mater., 2013, vol. 181, pp. 123–131.CrossRefGoogle Scholar
  4. 4.
    Clar, С., Scian, A.N., and Aglietti, E.F., Thermochim. Acta, 2003, vol. 407, nos. 1–2, pp. 33–40.CrossRefGoogle Scholar
  5. 5.
    Callender, R.L., Harlan, C.J., Shapiro, N.M., et al., Chem. Mater., 1997, vol. 9, pp. 2418–2433.CrossRefGoogle Scholar
  6. 6.
    Levin, O.V., Sidel’kovskaya, V.G., Aliev, R.R., and Leshcheva, E.A., Khim. Tekhnol. Topl. Masel, 1997, no. 2, pp. 29–31.Google Scholar
  7. 7.
    Dollimore, D. and Heal, G.R., J. Colloid Interface Sci., 1970, vol. 33, no. 4, pp. 508–519.CrossRefGoogle Scholar
  8. 8.
    Lamberov, A.A., Levin, O.V., Egorova, S.P., et al., Russ. J. Appl. Chem., 2003, vol. 76, no. 1, pp. 48–54.CrossRefGoogle Scholar
  9. 9.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of the Formation of Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Sibirskoe Otdelenie Ross. Akad. Nauk, 2002.Google Scholar
  10. 10.
    Young, V.Y. and Williams, K.R., J. Electron Spectrosc. Relat. Phenom., 1999, vol. 104, nos. 1–3, p. 221.CrossRefGoogle Scholar
  11. 11.
    Randhawa, B.S. and Gandotra, K., J. Therm. Anal. Calorim., 2006, vol. 85, no. 2, pp. 417–424.CrossRefGoogle Scholar
  12. 12.
    Kazakov, M.O., Lavrenov, A.V., Mikhailova, M.S., et al., Kinet. Catal., 2010, vol. 51, no. 3, pp. 438–443.CrossRefGoogle Scholar
  13. 13.
    O’Connell, C.A. and Dollimore, D., Thermochim. Acta, 2000, vols. 357–358, pp. 79–87.CrossRefGoogle Scholar
  14. 14.
    Mohanty, S., Das, B., and Dhara, S., J. Asian Ceram. Soc., 2013, vol. 1, pp. 184–190.CrossRefGoogle Scholar
  15. 15.
    Nair, L.P., Bijini, B.R., Prasanna, S., et al., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2015, vol. 137, pp. 778–784.CrossRefGoogle Scholar
  16. 16.
    Muraishi, K., Thermochim. Acta, 1990, vol. 164, pp. 401–409.CrossRefGoogle Scholar
  17. 17.
    Muraishi, K., Suzuki, Y., and Takahashi, Y., Thermochim. Acta, 1996, vol. 286, pp. 187–198.CrossRefGoogle Scholar
  18. 18.
    Caires, F.J., Lima, L.S., Carvalho, C.T., et al., Thermochim. Acta, 2010, vol. 497, pp. 35–40.CrossRefGoogle Scholar
  19. 19.
    Ivanova, A.S., Litvak, G.S., Kryukova, G.N., et al., Kinet. Catal., 2000, vol. 41, no. 1, pp. 122–126.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. Yu. Tregubenko
    • 1
    • 2
  • I. E. Udras
    • 1
  • A. S. Belyi
    • 1
    • 2
  1. 1.Institute of Hydrocarbons Processing, Siberian BranchRussian Academy of SciencesOmskRussia
  2. 2.Omsk State Technical UniversityOmskRussia

Personalised recommendations