Skip to main content
Log in

Low-Temperature Plasma-Chemical Deposition of Nanocomposite Antifriction Molybdenum Disulfide (Filler)–Silicon Oxide (Matrix) Coatings

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

It was demonstrated experimentally that the spatial separation of two processes of chemical vapor deposition, one of which provides synthesis of filler (MoS2) nanoparticles and the other yields the matrix (SiO2) of the nanocomposite coating, performed ina common reactor, enables an independent control over two process rates and makes it possible to widely vary the composition of the films deposited in this way. The deposition was performed in a double-zone vertical tubular quartz reactor. Molybdenum disulfide particles were produced by pyrolysis of aerosols of ammonium thiomolybdate solutions in dimethylformamide in the upper zone of the reactor, and the plasma-chemical deposition of a nanocomposite coating occurred in the lower zone into which MoS2 nanoparticles were transported by the gas flow and tetraethoxysilane was delivered. It was shown that the nanocomposite coatings composed of molybdenum disulfide (filler) and silicon oxide (matrix) possess improve the antifriction properties as compared with the matrix (SiO2 layers), these properties being determined by the relative amounts of MoS2 nanoparticles in the layer and by their average size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binions, R. and Parkin, I.P., Advances in Nanocomposites: Synthesis, Characterization and Industrial Applications, Reddy, B., Ed., Rijeka: InTech. 2011.

  2. Milionis, A., Dang, K., Prato, M., et al., J. Mater. Chem. A, 2015, vol. 3, pp. 12880–12889.

    Article  CAS  Google Scholar 

  3. Liu, Y. and Kumar, S., ACS Appl. Mater. Interfaces, 2014, vol. 6(9), pp. 6069–6087.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, S., Sun, D., Fu, Y., and Du, H., Surf. Coat. Technol., 2003, vol. 167, pp. 113–119.

    Article  CAS  Google Scholar 

  5. Alexandrov, S.E., Tyurikov, K.S., Kirilenko, D.A., et al., Adv. Mater. Interfaces, 2017, vol. 4, pp. 1700241.

    Article  CAS  Google Scholar 

  6. Kruis, F.E., Fissan, H., and Peled, A., J. Aerosol Sci., 1998, vols. 5–6, pp. 511–535.

    Article  Google Scholar 

  7. Barreca, D., Comini, E., Ferrucci, A.P., et al., Chem. Mater., 2007, vol. 19, pp. 5642–5649.

    Article  CAS  Google Scholar 

  8. Simon, Q., Barreca, D., Bekermann, D., et al., Int. J. Hydrogen Energy, 2011, vol. 36, pp. 15527–15537.

    Article  CAS  Google Scholar 

  9. Mungkalasiri, J., Bedel, L., Emieux, F., et al., Chem. Vap. Deposition,. 2010, vol. 16, pp. 35–41.

    Article  CAS  Google Scholar 

  10. Cao, Y., Su, Q., Che, R., et al., Synth. Met., 2012, vols. 11–12, pp. 968–973.

    Article  CAS  Google Scholar 

  11. Shelemin, A., Choukourov, A., Kousal, J., et al., Plasma Process. Polym., 2014, vol. 11, pp. 864–877.

    Article  CAS  Google Scholar 

  12. Zuber, K., Evans, D.R., McClure, S., Murphy, P.J., Adv. Eng. Mater., 2015, vol. 17, pp. 1547–1555.

    Article  CAS  Google Scholar 

  13. Zuber, K., Murphy, P., and Evans, D., Adv. Eng. Mater., 2015, vol. 17, pp. 474–482.

    Article  CAS  Google Scholar 

  14. Leterrier, Y., Boogh, L., Andersons, J., and Manson, J.-A.E., J. Polym. Sci., Part B: Polym. Phys., 1997, vol. 35, pp. 1449–1461.

    Article  CAS  Google Scholar 

  15. Lansdown, A.R., Molybdenum Disulphide Lubrication, Lansdown, A.R., Ed., Amsterdam: Elsevier. 1999.

  16. Aleksandrov, S.E., Filatov, K.D., and Tyurikov, K.S., Russ. J. Appl. Chem. 2016, vol. 89, pp. 714–718.

    Article  CAS  Google Scholar 

  17. Temple, P.A. and Hathaway, C.E., Phys. Rev. B, 1973, vol. 7, pp. 3685–3697.

    Article  CAS  Google Scholar 

  18. Downs, R., Database of Raman Spectroscopy, X-ray Diffraction and Chemistry of Minerals. http://rruff.info.

  19. Rubio, F., Rubio, J., and Oteo, J.L., Spectrosc. Lett., 1998, vol. 31, pp. 199–219.

    Article  CAS  Google Scholar 

  20. Gunda, R.K. and Narala, S.K.R., Surf. Coat. Technol., 2016, vol. 308, pp. 203–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Alexandrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, S.E., Tyurikov, K.S. & Breki, A.D. Low-Temperature Plasma-Chemical Deposition of Nanocomposite Antifriction Molybdenum Disulfide (Filler)–Silicon Oxide (Matrix) Coatings. Russ J Appl Chem 90, 1753–1759 (2017). https://doi.org/10.1134/S1070427217110040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217110040

Navigation