Skip to main content
Log in

DFT Study of Cyanide Oxidation on Ge-Doped Carbon Nanotubes

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the discovery of efficient catalyst with low price to cyanide (CN) oxidation in normal temperature is a major concern in the industry. In present study, in first step the carbon nanotubes (CNTss) were doped with Ge and the surface of Ge-doped CNTss via O2 molecule were activated. In second step the CN oxidation on activated Ge-CNTss surface via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms was investigated. Results show that O2 activated Ge-CNTs surface can oxidize the CN molecule via Ge-CNTs–O–O* + CN → Ge-CNTs–O–O*–CN → Ge-CNTs–O* + OCN and Ge-CNTs–O* + CN → Ge-CNTs + OCN reactions. Results show that CN oxidation on activated Ge-CNTs surface via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that activated Ge-CNTss is acceptable catalyst with low price and high performance for CN oxidation in normal temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu, Q., Gu, X.K., Chen, L., Wang, Z., and Zhang, H., Science, 2010, vol. 328, pp. 1141–1144.

    Article  CAS  Google Scholar 

  2. Royer, S. and Duprez, D., Chem. Cat. Chem., 2011, vol. 3, pp. 24–65.

    CAS  Google Scholar 

  3. Peterson, E.J., Nat. Commun., 2014, vol. 5, p. 4885.

    Article  CAS  Google Scholar 

  4. Hendriksen, B. and Frenken, J., Phys. Rev. Lett., 2002, vol. 9, 046101.

    Article  Google Scholar 

  5. Eichler, A., Surf. Sci., 2002, vol. 498, pp. 314–320.

    Article  CAS  Google Scholar 

  6. Lopez, N. and Janssens, T., J. Catal., 2004, vol. 223, pp. 232–235.

    Article  CAS  Google Scholar 

  7. Freund, H.J., Meijer, G., and Scheffler, M., Angew. Chem., 2011, vol. 50, pp. 10064–10094.

    Article  CAS  Google Scholar 

  8. Johnson, R.S., DeLaRiva, A., and Ashbacher, V., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 7768–7776.

    Article  CAS  Google Scholar 

  9. Su, H.Y., Yang, M.M., Bao, X.H., and Li, W.X., J. Phys. Chem. C, 2008, vol. 112, pp. 17303–17310.

    Article  CAS  Google Scholar 

  10. Chen, M.S., Cai, Y., and Yan, Z., Surf. Sci., 2007, vol. 601, pp. 5326–5331.

    Article  CAS  Google Scholar 

  11. Piccinin, S. and Stamatakis, M., ACS Catal., 2014, vol. 4, pp. 2143–2152.

    Article  CAS  Google Scholar 

  12. Liu, W., Zhu, Y., Lian, J., and Jiang, Q., J. Phys. Chem. C, 2007, vol. 111, pp. 1005–1009.

    Article  CAS  Google Scholar 

  13. Liu, D.J., J. Phys. Chem. C, 2007, vol. 111, pp. 14698–14706.

    Article  CAS  Google Scholar 

  14. Wallace, W.T. and Whetten, R.L., J. Am. Chem. Soc., 2002, vol. 124, pp. 7499–7505.

    Article  CAS  Google Scholar 

  15. Chang, C., Cheng, C., and Wei, C., J. Chem. Phys., 2008, vol. 128, pp. 124710–124710.

    Article  CAS  Google Scholar 

  16. Du, J., Wu, G., and Wang, J., J. Phys. Chem. A, 2010, vol. 114, pp. 10508–10514.

    Article  CAS  Google Scholar 

  17. Molina, L. and Hammer, B., Phys. Rev. Lett., 2003, vol. 90, 206102.

    Article  CAS  Google Scholar 

  18. Gong, X.Q., Liu, Z.P., Raval, R., and Hu, P., J. Am. Chem. Soc., 2004, vol. 126, pp. 8–9.

    Article  CAS  Google Scholar 

  19. Zhang, Y., Tan, Y.-W., Stormer, H.L., and Kim, P., Nature, 2005, vol. 438, pp. 201–204.

    Article  CAS  Google Scholar 

  20. Kan, E., Li, Z., and Yang, J., Nano, 2008, vol. 3, pp. 433–442.

    Article  CAS  Google Scholar 

  21. Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F., Nano Res., 2008, vol. 1, pp. 116–122.

    Article  CAS  Google Scholar 

  22. Lee, C., Wei, X., Kysar, J.W., and Hone, J., Science, 2008, vol. 321, pp. 385–388.

    Article  CAS  Google Scholar 

  23. Novoselov, K.S., Geim, A.K., and Morozov, S., Science, 2004, vol. 306, pp. 666–669.

    Article  CAS  Google Scholar 

  24. Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, vol. 6, pp. 183–191.

    Article  CAS  Google Scholar 

  25. Morozov, S., Novoselov, K., and KatGeelson, M., Phys. Rev. Lett., vol. 100, 2008, 016602.

    Article  CAS  Google Scholar 

  26. Geim, A.K., Science, 2009, vol. 324, pp. 1530–1534.

    Article  CAS  Google Scholar 

  27. Ratinac, K.R., Yang, W., Ringer, S.P., and Braet, F., Environ. Sci. Technol., 2010, vol. 44, pp. 1167–1176.

    Article  CAS  Google Scholar 

  28. Hornes, A. and Hungria, A.B., J. Am. Chem. Soc., 2010, vol. 132, p. 34.

    Article  CAS  Google Scholar 

  29. Hu, X., Wu, Y., and Zhang, Z., J. Mater. Chem., 2012, vol. 22, p. 15198.

    Article  CAS  Google Scholar 

  30. Y. Tang, X. Dai, Z. Yang, Z. Liu, L. Pan, D. Ma, Z. Lu, Carbon, 2014, vol. 71, p. 139.

    Article  CAS  Google Scholar 

  31. Li, Y., Zhou, Z., Yu, G., Chen, W., and Chen, Z., J. Phys. Chem. C, 2010, vol. 114, p. 6250.

    Article  CAS  Google Scholar 

  32. Song, E.H., Wen, Z., and Jiang, Q., J. Phys. Chem. C, 2011, vol. 115, pp. 3678.

    Article  CAS  Google Scholar 

  33. Tang, Y., Yang, Z., and Dai, X., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 16566.

    Article  CAS  Google Scholar 

  34. Tang, Y., Liu, Z., Dai, X., Yang, Z., Chen, W., and Lu, Z., Appl. Surf. Sci., vol. 308, 2014, p. 402.

    Article  CAS  Google Scholar 

  35. Lin, S., Ye, X., and Huang, J., Phys. Chem. Chem. Phys., vol. 17, 2015, p. 888.

    Article  CAS  Google Scholar 

  36. Tawfik, S.A., Cui, X.Y., Carter, D.J., and Stampfl, C., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 6925.

    Article  Google Scholar 

  37. Davies, A.G., Organotin Chemistry, 2nd ed., Wiley-VCH, Weinheim, 2004.

    Book  Google Scholar 

  38. Song, H., Zhang, L., He, C., Qu, Y., Tian, Y., and Lv, Y., J. Mater. Chem., 2011, vol. 21, p. 5972.

    Article  CAS  Google Scholar 

  39. Zhou, Q., Wang, C., Fu, Z., Tang, Y., and Zhang, H., Comput. Mater. Sci., 2014, vol. 83, pp. 398–402.

    Article  CAS  Google Scholar 

  40. Krasheninnikov, A.V., Lehtinen, P.O., and Foster, A.S., Phys. Rev. Lett., 2009, p. 102.

    Google Scholar 

  41. Li, F., Zhao, J., Chen, Z., J. Phys. Chem. C, 2012, vol. 16, pp. 2507–2514.

    Article  Google Scholar 

  42. Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Science, 2009, vol. 324, pp. 768–771.

    Article  CAS  Google Scholar 

  43. Reddy, A.L.M., Srivastava, A., Gowda, S.R., and Gullapalli, H., ACS Nano, 2010, vol. 4, pp. 6337–6342.

    Article  CAS  Google Scholar 

  44. Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, pp. 215–241.

    Article  CAS  Google Scholar 

  45. Andzelm, J. and Kolmel, C., J. Chem. Phys., 1995, 103, pp. 9312–9320.

    Article  CAS  Google Scholar 

  46. Gan, L.H. and Zhao, J.Q., Physica E, 2009, vol. 41, pp. 1249–1252.

    Article  CAS  Google Scholar 

  47. Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, pp. 553–566.

    Article  CAS  Google Scholar 

  48. Ma, L., Zhang, J.M., Xu, K.W., and Ji, V., Appl. Surf. Sci., 2015, vol. 343, pp. 121–127.

    Article  CAS  Google Scholar 

  49. Zhang, T., Xue, Q., Shan, M., and Jiao, Z., J. Phys. Chem. C, 2012, vol. 116, pp. 19918–19924.

    Article  CAS  Google Scholar 

  50. Wu, M., Cao, C., Jiang, J., N. J. Phys., 2010, vol. 12, 063020.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Najafi.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M. DFT Study of Cyanide Oxidation on Ge-Doped Carbon Nanotubes. Russ J Appl Chem 90, 1620–1626 (2017). https://doi.org/10.1134/S107042721710010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721710010X

Navigation