Russian Journal of Applied Chemistry

, Volume 90, Issue 7, pp 1089–1097 | Cite as

Effect of sodium vanadate on corrosion of AD31 aluminum alloy in acid media

  • D. S. KharitonovEmail author
  • I. I. Kurilo
  • I. M. Zharskii
Inorganic Synthesis and Industrial Inorganic Chemistry


Scanning electron microscopy, potentiodynamic polarization method, and electrochemical impedance spectroscopy were used to study the corrosion behavior of AD31 (AA6063) aluminum alloy in acid (pH 3) 0.05 M NaCl solutions containing 3 mmol dm–3 of NaVO3 inhibitor. It was found that the corrosion of AD31 alloy in acid sodium chloride solutions predominantly occurs locally at aluminum/intermetallic particle phase boundaries and is limited by the electrochemical stage of charge transfer. It was shown that introduction of sodium vanadate can reduce the rate of selective dissolution of magnesium from the alloy and provides a protective effect on the level of 7–10%.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scamans, G.M., Birbilis, N., and Buchheit, R.G., Shreir’s Corro sion. Corrosion of Aluminum and Its Alloys, Amsterdam: Elsiever, 2010.Google Scholar
  2. 2.
    Beletskii, V.M. and Krivov, G.A., Alyuminievye splavy (Sostav, svoistva, tekhnologiya, primenenie) [Aluminum Alloys (Composition, Properties, Technology, Application)], Moscow: Komintekh, 2005.Google Scholar
  3. 3.
    Barbucci, A., Bruzzone, G., Delucchi, M., et al., Intermetallics, 2000, vol. 8, pp. 305–312.CrossRefGoogle Scholar
  4. 4.
    Yin, L., Jin, Y., Leygraf, C., and Pan, J., Electrochim. Acta, 2016, vol. 192, pp. 310–318.CrossRefGoogle Scholar
  5. 5.
    Birbilis, N., Buchheit, R.G., J. Electrochem. Soc., 2005, vol. 152, pp. 140–151.CrossRefGoogle Scholar
  6. 6.
    Kendig, M.W. and Buchheit, R.G., Corrosion, 2003, vol. 59, pp. 379–400.CrossRefGoogle Scholar
  7. 7.
    Pokorny, P., Tej, P., and Szelag, P., Metalurgija, 2016, vol. 55, pp. 253–256.Google Scholar
  8. 8.
    Toxicological Profile for Chromium, Washington D.C.: U.S. Department of Health and Human Services, 2012.Google Scholar
  9. 9.
    Twite, R.L. and Bierwagen, G.P., Prog. Org. Coat., 1998, vol. 33, pp. 91–100.CrossRefGoogle Scholar
  10. 10.
    Lopez-Garrity, O. and Frankel, G.S., J. Electrochem. Soc., 2014, vol. 161, pp. 95–106.CrossRefGoogle Scholar
  11. 11.
    Madden, S.B. and Scully, J.R., J. Electrochem. Soc., 2014, vol. 161, pp. 162–175.CrossRefGoogle Scholar
  12. 12.
    Kharitonov, D.S., Kurilo, I. I., Wrzesinska, A., and Zharskii, I.M., Mat.–wiss. Werkstofftech., 2017, vol 48, pp. 646–660.Google Scholar
  13. 13.
    Iannuzzi, M., and Frankel, G.S., Corros. Sci., 2007, vol. 49, pp. 2371–2391.CrossRefGoogle Scholar
  14. 14.
    Ralston, K.D. and Buchheit, R.G., ECS Electrochem. Lett., 2013, vol. 2, pp. 35–38.CrossRefGoogle Scholar
  15. 15.
    Ralston, K.D., Chrisanti, S., Young, T.L., and Buchheit, R.G., J. Electrochem. Soc., 2008, vol. 155, pp. 350–359.CrossRefGoogle Scholar
  16. 16.
    Kharitonov, D.S., Kurilo, I.I., and Zharskii, I.M., Sviridov Read., 2016, vol. 12, pp. 117–128.Google Scholar
  17. 17.
    Hurley, B.L., Qiu, S., and Buchheit, R.G., J. Electrochem. Soc., 2011, vol. 158, pp. 125–131.CrossRefGoogle Scholar
  18. 18.
    Iannuzzi, M., Kovac, J., and Frankel, G.S., Electrochim. Acta, 2007, vol. 52, pp. 4032–4042.CrossRefGoogle Scholar
  19. 19.
    Guan, H. and Buchheit, R.G., Corrosion, 2004, vol. 60, pp. 284–296.CrossRefGoogle Scholar
  20. 20.
    Niu, L., Chang, S.H., Tong, X., et al., J. Alloys Compd., 2014, vol. 617, pp. 214–218.CrossRefGoogle Scholar
  21. 21.
    Eriksson, G., Anal. Chim. Acta, 1979, vol. 112, pp. 375–383.CrossRefGoogle Scholar
  22. 22.
    Larson, J.W., J. Chem. Eng. Data, 1995, vol. 40, pp. 1276–1280.CrossRefGoogle Scholar
  23. 23.
    Aureliano, M., Ohlin, C.A., Vieira, M.O., et al., Dalt. Trans., 2016, vol. 45, pp. 7391–7399.CrossRefGoogle Scholar
  24. 24.
    Rehder, D., Inorganic and Coordination Compounds of Vanadium, Chichester: John Wiley & Sons, 2008.CrossRefGoogle Scholar
  25. 25.
    Buchheit, R.G., J. Electrochem. Soc., 1995, vol. 142, pp. 3994–3996.CrossRefGoogle Scholar
  26. 26.
    Zhang, F., Nilsson, J.-O., and Pan, J., J. Electrochem. Soc., 2016, vol. 163, pp. 609–618.CrossRefGoogle Scholar
  27. 27.
    Zhang, W. and Frankel, G.S., Electrochim. Acta, 2003, vol. 48, pp. 1193–1210.CrossRefGoogle Scholar
  28. 28.
    Eckermann, F., Suter, T., Uggowitzer, P.J., et al., Electrochim. Acta, 2008, vol. 54, pp. 844–855.CrossRefGoogle Scholar
  29. 29.
    Scamans, G.M., Holroyd, N.J.H., and Tuck, C.D.S., Corros. Sci., 1987, vol. 27, pp. 329–347.CrossRefGoogle Scholar
  30. 30.
    Boukerche, I., Djerad, S., Benmansour, L., et al., Corros. Sci., 2014, vol. 78, pp. 343–352.CrossRefGoogle Scholar
  31. 31.
    Kozin, L.F., Elektroosazhdenie i rastvorenie mnogovalentnykh metallov (Electrodeposition and Dissolution of Polyvalent Metals), Kiev: Naukova Dumka, 1989.Google Scholar
  32. 32.
    Khaleb, K.F., Corros. Sci., 2010, vol. 52, pp. 2905–2916.CrossRefGoogle Scholar
  33. 33.
    Wysocka, J., Krakowiak, S., Ryl, J., and Darowicki, K., J. Electro anal. Chem., 2016, vol. 778, pp. 126–136.CrossRefGoogle Scholar
  34. 34.
    Orazem, M.E. and Tribollet, B., Electrochemical Impedance Spectroscopy, Hoboken: John Wiley & Sons Inc., 2008.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. S. Kharitonov
    • 1
    • 2
    Email author
  • I. I. Kurilo
    • 1
  • I. M. Zharskii
    • 1
  1. 1.Belarusian State Technological UniversityMinskBelarus
  2. 2.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations