Advertisement

Russian Journal of Applied Chemistry

, Volume 90, Issue 6, pp 831–837 | Cite as

Formation and thermal properties of nanocrystalline Bi4Ti3O12

  • N. A. Lomanova
  • M. V. Tomkovich
  • V. L. Ugolkov
  • V. V. Gusarov
Inorganic Synthesis and Industrial Inorganic Chemistry

Abstract

Mechanism by which nanocrystalline Bi4Ti3O12 is formed in thermal treatment of coprecipitated hydroxides was studied. It was shown that the onset of the active formation is correlated with the melting point of the surface phase based on bismuth oxide. The technological synthesis parameters of Bi4Ti3O12, at which crystallite sizes in the range 35–60 nm are provided, were determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurrivillius, B., Ark. Kemi, 1949, vol. 1, no. 1, pp. 463–471.Google Scholar
  2. 2.
    Keeney, L., Maity, T., Schmidt, M., et al., J. Am. Ceram. Soc., 2013, vol. 96, pp. 2339–2357.CrossRefGoogle Scholar
  3. 3.
    Jiang, P.P., Zhang, X.L., Chang, P., et al., J. Appl. Phys., 2014, vol. 115, pp. 144101–144105.CrossRefGoogle Scholar
  4. 4.
    Birenbaum, A.Y. and Ederer, C., Phys. Rev. B, 2014, vol. 90, pp. 214109–214112.CrossRefGoogle Scholar
  5. 5.
    Long, C., Chang, Q., and Fan, H., Sci. Rep., 2017, vol. 7, no. 1, pp. 4193–4215.CrossRefGoogle Scholar
  6. 6.
    Bartkowska, J.A., Dercz, J., and Michalik, D., Sol. St. Phenom., 2015, vol. 226, pp. 17–22.CrossRefGoogle Scholar
  7. 7.
    Chen, K.-H., Diao, C.-C., Yang, C.-F., and Wang, B.-X., Ferroelectr., 2009, vol. 385, pp. 46–53.Google Scholar
  8. 8.
    Kalinkin, A.N., Kozhbakhteev, E.M., Polyakov, A.E., and Sborikov, V.M., Inorg. Mater., 2013, vol. 49, no. 10, pp. 1031–1043.CrossRefGoogle Scholar
  9. 9.
    Wei, W., Dai, Y., and Huang, B., J. Phys. Chem. C, 2009, vol. 113, no. 14, pp. 5658–5663.CrossRefGoogle Scholar
  10. 10.
    Cui, Z.M., Yang, H., Zhang, M., et al., Mater. Trans., 2016, vol. 57, no. 10, pp. 1766–1770.CrossRefGoogle Scholar
  11. 11.
    Kargin, Yu.F., Ivicheva, S.N., and Volkov, V.V., Russ. J. Inorg. Chem., 2015, vol. 60, no. 5, pp. 619–625.CrossRefGoogle Scholar
  12. 12.
    Esquivel-Elizondo, J.R., Hinojosa, B.B., and Nino, J.C., Chem. Mater., 2011, vol. 23, pp. 4965–4974.CrossRefGoogle Scholar
  13. 13.
    Morozov, M.I., Mezentseva, L.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 7, pp. 1110–1113.CrossRefGoogle Scholar
  14. 14.
    Lomanova, N.A., Morozov, M.I., Ugol kov, V.L., and Gusarov, V.V., Inorg. Mater., 2006, vol. 42, no. 2, pp. 189–195.CrossRefGoogle Scholar
  15. 15.
    Navarro-Rojero, M.G., Romero, J.J., Rubio-Marcos, F., and Fernandez, J.F., Ceram. Int., 2010, vol. 36, pp. 1319–1325.CrossRefGoogle Scholar
  16. 16.
    Lomanova, N.A., Semenov, V.G., Panchuk, V.V., and Gusarov, V.V., J. Alloys Compd., 2012, vol. 528, pp. 103–108.CrossRefGoogle Scholar
  17. 17.
    Lomanova, N.A., Ugolkov, V.L., Panchuk, V.V., and Semenov, V.G., Russ. J. Gen. Chem., 2017, vol. 87, pp. 365–372.CrossRefGoogle Scholar
  18. 18.
    Gumiel, C., Bernardo, M.S., Villanueva, P.G., et al., J. Mater. Sci., 2017, vol. 52, pp. 4042–4051.CrossRefGoogle Scholar
  19. 19.
    Wong, Y.J, Hassan, J., Chen, S.K., and Ismail, I., J. Alloys Compd., 2017, vol. 723, pp. 567–579.CrossRefGoogle Scholar
  20. 20.
    Stojanovic, B.D., Paiva-Santos, C.O., Cilense, M., et al., Mater. Res. Bull., 2008, vol. 43, pp. 1743–1753.CrossRefGoogle Scholar
  21. 21.
    Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, pp. 1846–1851.Google Scholar
  22. 22.
    Xu, G., Yang, Y., Bai, H., et al., Cryst. Eng. Comm., 2016, vol. 18, no. 13, pp. 2268–2274.CrossRefGoogle Scholar
  23. 23.
    Gu, H., Hu, Z., Hu, Y., et al., Colloids Surf. A, 2008, vol. 315, nos. 1–3, pp. 294–298.CrossRefGoogle Scholar
  24. 24.
    Kana, Y., Wang, P., Li, Y., et al., Mater. Lett., 2002, vol. 56, pp. 910–914.CrossRefGoogle Scholar
  25. 25.
    Lisoni,J.G., Millan, P., Vila, E., et al., Chem. Mater., 2001, vol. 13, pp. 2084–2091.CrossRefGoogle Scholar
  26. 26.
    Zhang, F., Karaki, T., and Adachi, M., Jap. J. Appl. Phys., 2006, vol. 45, no. 9B, pp. 7385–7388.CrossRefGoogle Scholar
  27. 27.
    Chen Zhihui, Qiu Junfu, Liu Cheng, et al., Ceram. Int., 2010, vol. 36, pp. 241–244.CrossRefGoogle Scholar
  28. 28.
    Kidcho, T., Malfatti, L., Marongiu, D., et al., J. Am. Ceram. Soc., 2010, vol. 93, no. 9, pp. 2897–2902.CrossRefGoogle Scholar
  29. 29.
    Ma, C.H., Lin, X., Wang, L., and Yan, Y.S., Adv. Mater. Res., 2014, vol. 997, pp. 359–362.CrossRefGoogle Scholar
  30. 30.
    Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, pp. 2251–2253.CrossRefGoogle Scholar
  31. 31.
    Kato, T., Jap. J. Appl. Phys., 1983, vol. 22, pp. 47–49.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. A. Lomanova
    • 1
  • M. V. Tomkovich
    • 1
  • V. L. Ugolkov
    • 2
  • V. V. Gusarov
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations