Skip to main content
Log in

Films of supersaturated Cd x Pb1–x S solid solutions: Composition prognostication, chemical synthesis, microstructure

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Working conditions and the concentration regions of the joint precipitation of PbS and CdS at which substitution solid solutions Cd x Pb1–x can be formed were determined by calculation of ionic equilibria in the citrate-ammonia reaction mixture at 298 and 353 K with consideration for the conversion fractions of lead and cadmium sulfides into the corresponding sulfides. The hydrochemical precipitation onto glass-ceramic substrates was used to obtain Cd x Pb1–x S (0 < x ≤ 0.149) solid solution films with thicknesses of 0.5 to 1.7 μm and high supersaturation with the substituting component. All the films crystallize to form the B1 structure. The phase and elemental compositions and morphological specific features of the films were studied. It was shown that the thickness of the deposited layers is most strongly affected by the process temperature, ammonium hydroxide concentration, and relative amounts of the metal salts in the reaction mixture. It was found that there are oxygen and chlorine in the Cd x Pb1–x S solid solutions, and the distribution of these elements across the layer thickness was determined, with the layer-by-layer distribution of chlorine having a pronounced oscillatory nature. It was shown that, as the chemical precipitation temperature is raised, the content of CdS in the substitution solid solutions grows exponentially. The activation energies Ea.ic of the lead and cadmium interchange in the PbS crystal lattice were found to be, depending on the initial concentration of the lead salt, 75.3, 42.8, and 22.2 kJ mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patricia L. Nichols, Zhicheng Liu, Leijun Yin, et al., Nano Lett., 2015, no. 15, pp. 909–916.

    Article  Google Scholar 

  2. Hernadez–Borja J., Vorobiev Y. V., and Ramirez–Bon, J., Solar Energy Mater. Solar Cells, 2011, vol. 95, pp. 1882–1888.

    Article  Google Scholar 

  3. Markov, V.F., Maskaeva, L.N., and Polikarpova, Yu.S., Butlerov Soobshch., 2006, vol. 8, no. 1, pp. 54–61.

    Google Scholar 

  4. Maskaeva, L.N., Markov, V.F., Porkhachev, M.Yu., and Mokrousova, O.A., Pozharovzryvobezopasnost’, 2015, vol. 24, no. 9, pp. 67–73.

    Google Scholar 

  5. Chattraki, A.N., Kamble, S.S., and Deshmukh, L.P., Mater. Lett., 2012, no. 67, pp. 39–41.

    Article  Google Scholar 

  6. Obaid, A.S., Mahdi, M.A., Hassan, Z., and Bououdina, M., Superlattices Microstruct., 2012, no. 52, p. 816.

    Article  CAS  Google Scholar 

  7. Guo-Long Tan, Limin Liu, and Weibing Wu, AIP Adv., 2014, no. 4, p. 067107.

    Article  Google Scholar 

  8. Urusov, V.S., Tauson, V.L., and Akimov, V.V., Geokhimiya tverdogo tela (Solid State Geochemistry), Moscow: GEOS, 1997.

    Google Scholar 

  9. Eman M. Nasir and Iqbal S. Naji, Australian J. Basic Appl. Sci., 2015, vol. 9, no. 20, pp. 364–371.

    Google Scholar 

  10. Rokakh, A.G., Bilenko, D.I., Shishkin, M.I., et al., Semiconductors, 2014, vol. 48, no. 12, pp. 1562–1566.

    Article  CAS  Google Scholar 

  11. Anbarasi, M., Nagarethinam, V.S., Baskaran, R., and Narasimman, V., Pacific Sci. Rev. A: Natural Sci. Eng., 2016, vol. 18, no. 1, pp. 72–77.

    Google Scholar 

  12. Rabinovich, E., Wachtel, E., and Hodes, G., Thin Solid Films, 2008. 517, pp. 737–744.

    Article  CAS  Google Scholar 

  13. Shelimova, L.E., Tomashik, V.N., and Grytsiv, V.I., Diagrammy sostoyaniya v poluprovodnikovom materialovedenii (sistemy na osnove khal’kogenidov Si, Ge, Sn, Pb) [Constitution Diagrams in Semiconductor Materials Science (Systems Based on Si, Ge, Sn, Pb Chalcogenides), Moscow: Nauka, 1991.

    Google Scholar 

  14. Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment (Hydrochemical Deposition of Metal Sulfide Films: Simulation and Experiment), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2006.

    Google Scholar 

  15. Obaid, A.S., Hassan, Z., Mahdi, M.A., and Bououdina, M., Sol. Energy, 2013, vol. 89, pp. 143–151.

    Article  CAS  Google Scholar 

  16. Barote, M.A., Kamble, S.S., Deshmukh, L.P., and Masumdar, E.U., Ceram. Int., 2013, vol. 39, pp. 1463–1467.

    Article  CAS  Google Scholar 

  17. Suryavanshi, K.E., Dhake, R.B., Patil, A.M., et al., Int. J. Adv. Res., 2014, vol. 2, no. 6, pp. 491–493.

    Google Scholar 

  18. Suryavanshi, K.E., Patil, A.M., and Dhake, R.B., Der Chem. Sinica, 2015, vol. 6, no. 6, pp. 59–65.

    CAS  Google Scholar 

  19. Deo, S.R., Singh, A.K., Deshmukh, L., et al., Optik–Int. J. Light Electron Optics, 2015, vol. 126, no. 20, pp. 2311–2317.

    Article  CAS  Google Scholar 

  20. Suryavanshi, K.E., Dhake, R.B., and Patil, A.M., Int. J. Adv. Sci. Tech. Res., 2014, vol. 2, no. 4, pp. 858–861.

    Google Scholar 

  21. Ahmad, S.M., Kasim, S.J., and Latif, L.A., Jordan J. Phys., 2016, vol. 9, no. 2, pp. 113–122.

    Google Scholar 

  22. Rodriguez-Carvajal, J., Physica B, 1993, vol. 192, pp. 55–64.

    Article  CAS  Google Scholar 

  23. Maskaeva, L.N., Glukhova, I.A., Markov, V.F., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 1939–1947.

    Article  CAS  Google Scholar 

  24. Martell, A.E. and Hancock, R.D., Metal Complexes in Aqueous Solutions, New York: Plenum Press, 1996.

    Book  Google Scholar 

  25. Volkov, B.A., Ryabova, L.I., and Khokhlov, D.R., Uspekhi Fiz. Nauk, 2002, vol. 172, no. 8, pp. 875–906.

    Article  Google Scholar 

  26. Maskaeva, L.N., Markov, V.F., and Gusev, A.I., Russ. J. Inorg. Chem., 2004, vol. 49, no. 7, pp. 971–977.

    Google Scholar 

  27. Markov, V.F., Maskaeva, L.N., and Kitaev, G.A., Russ. J. Appl. Chem., 2000, vol. 73, no. 8, pp. 1328–1331.

    Google Scholar 

  28. Maskaeva, L.N., Markov, V.F., Forostyanaya, N.A., et al., Zh. Obshch. Khim., 2016, vol. 86, no. 10, pp. 1624–1632.

    Google Scholar 

  29. Maskaeva, L.N., Markov, V.F., Vaganova, I.V., and Forostyanaya, N.A., Butlerov Soobshch., 2017, vol. 49, no. 3, pp. 50–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maskaeva.

Additional information

Original Russian Text © L.N. Maskaeva, I.V. Vaganova, V.F. Markov, V.I. Voronin, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 5, pp. 553−563.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskaeva, L.N., Vaganova, I.V., Markov, V.F. et al. Films of supersaturated Cd x Pb1–x S solid solutions: Composition prognostication, chemical synthesis, microstructure. Russ J Appl Chem 90, 691–700 (2017). https://doi.org/10.1134/S1070427217050044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217050044

Navigation