Advertisement

Russian Journal of Applied Chemistry

, Volume 90, Issue 3, pp 446–451 | Cite as

Extraction of Cu2+ from aqueous solutions using microcapsules containing ionic liquid [BMIM]PF6

  • H. Y. LiEmail author
  • Q. Wang
  • Y. X. Cui
  • S. Li
  • Y. J. Ma
Various Technological Processes
  • 53 Downloads

Abstract

Polysulfone (PSF) microcapsules filled with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] were successfully prepared via solvent evaporation method. The encapsulation capacity of 38.0% was achieved. Microcapsules showed a spherical, porous honeycomb structure. The size of microcapsules was approximately 110 μm and the thickness was approximately 10 μm. Microcapsules have excellent thermal stability, with a higher thermal degradation onset temperature of 360°C compared to traditional extractant-loaded microcapsules. Microcapsules were used to extract Cu2+ from aqueous solutions. The effect of chelator, pH, PSF, and ionic liquid on the extraction rate were studied. When chelator was added in aqueous solutions, and the pH of aqueous solutions was 4.5, the extraction rate of microcapsules reached the maximum value, which was 99.0%. These PSF microcapsules containing [BMIM][PF6] showed potential ability in the treatment of wastewater.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumano, M., Yabutani, T., Motonaka, J., and Mishima, Y., J. Int. J. Mod. Phys. B, 2006, vol. 20, pp. 4051–4056.CrossRefGoogle Scholar
  2. 2.
    Dhananjay, B.S., Sanjay, B.A., Varsha, S., and Mika, E.T., S. Curr. Anal. Chem., 2015, vol. 11, pp. 36–43.Google Scholar
  3. 3.
    Peng, G.L., Lu, Y., He, Q., Daniel, M., Zhou, G.M., Chen, J.H., and Tang, X.H., J. Aoac. Int., 2016, vol. 99, pp. 260–261.CrossRefGoogle Scholar
  4. 4.
    Bulent, K. and Gul, A., J. Radioanal. Nucl. Ch., 2016, vol. 308, pp. 81–91.CrossRefGoogle Scholar
  5. 5.
    Kononova, O.N., Duba, E.V., Karplyakova, N.S. and Krylov, A.S., Russ. J. Phys. Chem. A+, 2015, vol. 89, pp. 1464–1470.CrossRefGoogle Scholar
  6. 6.
    Aravindhan, R., Rao, J.R., and Nair, B.U., J. Environ. Manage, 2009, vol. 90, pp. 1877–1883.CrossRefGoogle Scholar
  7. 7.
    Bestamin, O.J., Hazard. Mater., 2006, vol. 129, pp. 158–163.CrossRefGoogle Scholar
  8. 8.
    Pospiech, B. and Kujawski, W., Rev. Chem. Eng., 2015, vol. 31, pp. 179–191.CrossRefGoogle Scholar
  9. 9.
    Stojanovic, A. and Keppler, B.K., Sep. Sci. Technol., 2012, vol. 47, pp. 189–203.CrossRefGoogle Scholar
  10. 10.
    Lertlapwasin, R., Bhawawet, N., Imyim, A., and Fuangswasdi, S., Sep. Purif. Technol. 2010, vol. 72, pp. 70–76.Google Scholar
  11. 11.
    Domanska, U., Rekawek, A., J. Solution. Chem., 2009, vol. 38, pp. 739–751.CrossRefGoogle Scholar
  12. 12.
    Yang, W.W., Luo, G.S., and Wu F.Y., Acta Polymerica Sinica, 2005, vol. 2, pp. 207–212.Google Scholar
  13. 13.
    Chen, D.X., OuYang, X.K., Wang, Y.G., Yang, L.Y., Wu, K.J. and He, C.H., Colloid. Surface. A, 2014, vol. 441, pp. 72–76.CrossRefGoogle Scholar
  14. 14.
    Yang, W.W., Lu, Y.C., Xiang, Z.Y. and Luo, G.S., React. Funct. Polym., 2007, vol. 67, pp. 81–86.CrossRefGoogle Scholar
  15. 15.
    Yang, M.M., Zhu, X.T., Ren, G.N., Men, X.H., Guo, F., Li, P.L. and Zhang, Z.Z., Tribol. Lett., 2015, vol. 58, p. 9.Google Scholar
  16. 16.
    Liu, J.N., Zhang, Q., and Ren, X.W., J. Central China Normal Univ. (Natural Sci.), 2010, vol. 44, pp. 80–85.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • H. Y. Li
    • 1
    Email author
  • Q. Wang
    • 2
  • Y. X. Cui
    • 1
  • S. Li
    • 1
  • Y. J. Ma
    • 1
  1. 1.Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical EngineeringNortheast Petroleum UniversityDaqingP R China
  2. 2.Guangxi Investment Group Natural Gas Pipeline Network Co. Ltd.NanningP R China

Personalised recommendations