Skip to main content
Log in

Preparation, magnetic properties and microwave absorption of Zr–Zn–Co substituted strontium hexaferrite and its nanocomposite with polyaniline

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

M-type strontium hexaferrite substituted by Zr4+, Zn2+, and Co2+ was firstly synthesized by a sol-gel auto combustion method. Then the polyaniline/hexaferrite nanocomposite with 20 wt % hexaferrite was prepared by in situ polymerization method. The structure, morphology, and composition of substituted hexaferrite, polyaniline and their composition were investigated by using XRD, FTIR, TGA-DSC, UV-Vis spectroscopy, and FESEM techniques. The results showed that M-type hexaferrite nanoparticles were formed and nanoparticles were effectively coated by polyaniline chains. The magnetic properties of samples were measured by the vibrating sample magnetometer (VSM). The saturation magnetization (M s), magnetic remanence (M r), and coercivity (Hc) of composite are lower than those of pure hexaferrite. The microwave absorption properties of samples were measured by vector network analyzer (VNA). The results indicated that the minimum reflection loss (RL) of composite is–20 dB at 10.1 GHz and its bandwidth with more than 90% absorption is up to 3.5 GHz which has covered the overall X-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghzaiel, T.B., Dhaoui, W., Schoenstein, F., Talbot, P., Mazaleyrat, F., J. Alloys & Compounds, 2017, vol. 692, p. 774.

    Article  CAS  Google Scholar 

  2. Zhang, P., Han, X.J., Kang, L.L., Qiang, R., Liu, W.W., Du, Y.C., RSC Adv., 2013, vol. 3, p. 12694.

    Article  CAS  Google Scholar 

  3. Ting, T.H. and Wu, K.H., J. Magn. Magn. Mater., 2010, vol. 322, p. 2160.

    Article  CAS  Google Scholar 

  4. Yang, C.C., Gung, Y.J., Hung, W.C., Ting, T.H., and Wu, K.H., Compos. Sci. Technol., 2010, vol. 70, p. 466.

    Article  CAS  Google Scholar 

  5. Ashiq, M.N., Qureshi, R.B., Malana, M.A., and Ehsan, M.F., J. Alloys & Compounds, 2015, vol. 651, p. 266.

    Article  CAS  Google Scholar 

  6. Pullar, R.C., Progress in Mat. Sci., 2012, vol. 57, p. 1191.

    Article  CAS  Google Scholar 

  7. Baniasadi, A., Ghasemi, A., Nemati, A., Ghadikolaei, M.A., and Paimozd, E., J. Alloys & Compounds, 2014, vol. 583, p. 325.

    Article  CAS  Google Scholar 

  8. Meng, P., Xiong, K., Wanga, L., Li, S., Cheng, Y., Xu, G., J. Alloys & Compounds, 2015, vol. 628, p. 75.

    Article  CAS  Google Scholar 

  9. Li, Y., Huanga, Y., Qia, S., Niua, L., Zhanga, Y., and Wua, Y., Appl. Sur. Sci., 2012, vol. 258, p. 3659.

    Article  CAS  Google Scholar 

  10. Zu, L., Cui, X., Jiang, Y., Hu, Z., Lian, H., Liu, Y., Jin, Y., Li, Y., and Wang, X., Materials, 2015, vol. 8, no. 4, p. 1369.

    Article  Google Scholar 

  11. Ghzaiel, T.B., Dhaoui, W., Pasko, A., and Mazaleyrat, F., Mater. Chem. Phys., 2016, vol. 179, p. 42.

    Article  Google Scholar 

  12. Alam, R.S., Moradi, M., Nikmanesh, H., Ventura, J., and Rostami, M., J. Magnetism & Magnetic Materials, 2016, vol. 402, p. 20.

    Article  Google Scholar 

  13. Pouget, J.P., Jozefowicz, M.E., Epstein, A.J., Tang, X., and MacDiarmid, A.G., Macromolecules, 1991, vol. 24, p. 779.

    Article  CAS  Google Scholar 

  14. Xu, F., Maa, L., Gan, M., Tang, J., Li, Z., Zheng, J., Zhang, J., Xie, S., Yin, H., Shen, X., Hua, J., and Zhang, F., J. Alloys & Compounds, 2014, vol. 593, p. 24.

    Article  CAS  Google Scholar 

  15. Kustov, E.F., Novotortsev, V.M., Serebryannikov, S.V., and Cheparin, V.P., Russ. J. Inorg. Chem., 2011, vol. 56, p. 591.

    Article  CAS  Google Scholar 

  16. Mosleh, Z., Kameli, P., Poorbaferani, A., Ranjbar, M., and Salamati, H., J. Magnetism & Magnetic Materials, 2016, vol. 397, p. 101.

    Article  CAS  Google Scholar 

  17. Ezzati, S.N., Rabbani, M., Leblanc, R.M., Asadi, E., Ezzati, S.M.H., Rahimi, R., and Deilami, S.A., J. Alloys & Compounds, 2015, vol. 646, p. 1157.

    Article  CAS  Google Scholar 

  18. Hosseini, S.H., Askari, M., and Noushin Ezzati, S., Synth. Met., 2014, vol. 196, p. 68.

    Article  CAS  Google Scholar 

  19. Yuan, C.L. and Hong, Y.S., J. Mater. Sci., 2010, vol. 45, p. 3470.

    Article  CAS  Google Scholar 

  20. Sozeri, H., Kurtan, U., Topkaya, R., Baykal, A., and Toprak, M.S., Ceram. Int., 2013, vol. 39, p. 5137.

    Article  CAS  Google Scholar 

  21. Yuan, C.L. and Hong, Y.S., J. Mater. Sci., 2010, vol. 45, p. 3470.

    Article  CAS  Google Scholar 

  22. NahidShiri, A. and Amirabadizade, Ali Ghasemi, J. Alloys & Compounds, 2017, vol. 690, p. 759.

    Article  Google Scholar 

  23. Chang, S., Kangning, S., and Pengfei, C., J. Magnetism & Magnetic Materials, 2012, vol. 324, p. 802.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yousefi.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavinik, S., Yousefi, M. Preparation, magnetic properties and microwave absorption of Zr–Zn–Co substituted strontium hexaferrite and its nanocomposite with polyaniline. Russ J Appl Chem 90, 298–303 (2017). https://doi.org/10.1134/S1070427217020215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217020215

Navigation