Skip to main content
Log in

Removal of thiocyanates and heavy metal ions from simulated wastewater solutions by electro- and peroxyelectrocoagulation

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A procedure for treatment of simulated wastewater solutions to remove Cu2+, Ni2+, and SCN ions using various combinations of aluminum and iron electrodes in the electro- and peroxyelectrocoagulation processes was studied. The influence exerted by the current density, pH of solution, and concentrations of impurities and hydrogen peroxide on the efficiency of removal of these ions was analyzed. Electrocoagulation using aluminum anode does not lead to a significant decrease in the thiocyanate concentration. In the peroxyelectrocoagulation process, the efficiency of removal of SCN− ions increases with an increase in the [H2O2]: [SCN] ratio. The electrocoagulation efficiency with the Fe/Fe electrode pair reaches 87% for SCN and 99.5% for Cu2+ and Ni2+ at a current density of 20 mA cm–2 and electrolysis time of 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chanturiya, V.A. and Solozhenkin, P.M., Gal’vanokhimicheskie metody ochistki tekhnogennykh vod: Teoriya i praktika (Electrochemical Methods for Treatment of Technogenic Waters: Theory and Practice), Moscow Akademkniga, 2005.

    Google Scholar 

  2. Walsh, F.C., Pure Appl. Chem., 2001. vol. 73, pp. 1819–1837.

    Article  CAS  Google Scholar 

  3. Chen, G.H., Sep. Purif. Technol., 2004, vol. 38, pp. 11–41.

    Article  Google Scholar 

  4. Oller, I., Malato, S., and Sanchez-Perez, J.A., Sci. Total Environ., 2011, vol. 409, pp. 4141–4166.

    Article  CAS  Google Scholar 

  5. Cañizares, P., Martínez, F., Garsía-Gómez, J., et al., J. Appl. Electrochem., 2002, vol. 32, pp. 1241–1246.

    Article  Google Scholar 

  6. Merzouk, B., Gourich, B., Sekki, A., et al., J. Hazard. Mater., 2009, vol. 164, pp. 215–222.

    Article  CAS  Google Scholar 

  7. Keerthi, A., Vinduja, V., and Balasubramanian, N., Environ. Technol., 2013, vol. 34, no. 20, pp. 2897–2902.

    Article  CAS  Google Scholar 

  8. Montanaro, D., Petrucci, E., and Merli, C., J. Appl. Electrochem., 2008, vol. 38, pp. 947–954.

    Article  CAS  Google Scholar 

  9. Daghrir, R. and Drogui, P., Environ. Chem. Lett., 2013, vol. 11, pp. 151–156.

    Article  CAS  Google Scholar 

  10. Singh, S., Srivastava, V.C., and Mall, I.D., J. Phys. Chem., 2013, vol. 117, pp. 15229–15240.

    CAS  Google Scholar 

  11. Kabdasli, I., Arslan, T., Ölmez-Hanci, T., et al., J. Hazard. Mater., 2009, vol. 165, pp. 838–845.

    Article  CAS  Google Scholar 

  12. Haidmann, I. and Calmano, W., J. Hazard. Mater., 2008, vol. 152, pp. 934–941.

    Article  Google Scholar 

  13. Katal, R. and Pahlavanzadeh, H., Desalination, 2011, vol. 265, pp. 199–205.

    Article  CAS  Google Scholar 

  14. Akbal, F. and Camci, C., Chem. Eng. Technol., 2010, vol. 33, pp. 1655–1664.

    Article  CAS  Google Scholar 

  15. Kabdasli, I., Arslan, T., Ölmez-Hanci, T., et al., Water Sci. Technol., 2010, vol. 61, pp. 2617–2624.

    Article  CAS  Google Scholar 

  16. Martínez-Huitle, C.A. and Brillas, E., Appl. Catal. B: Environ., 2009, vol. 87, pp. 105–145.

    Article  Google Scholar 

  17. Rodrigo, M.A., Cañizares, P., Buitrón, C., and Sáez, C., Electrochim. Acta, 2010, vol. 55, pp. 8160–8164.

    Article  CAS  Google Scholar 

  18. Kuokkanen, V., Kuokkanen, T., Rämö, J., et al., J. Water Process Eng., 2015, vol. 8, pp. e50–e57.

  19. Zeboudji, B., Drouiche, N., Lounici, H., et al., Sep. Sci. Technol., 2013, vol. 48, pp. 1280–1288.

    Article  CAS  Google Scholar 

  20. Prosyanikov, E.D., Tsybikova, B.A., Batoeva, A.A., and Ryazantsev, A.A., J. Mining Sci., 2009, vol. 45, no. 1, pp. 80–86.

    Article  Google Scholar 

  21. Kabdasli, I., Arslan-Alaton, I., Vardar, B., and Tünay, O., Water Sci. Technol., 2007, vol. 55, pp. 125–134.

    Article  CAS  Google Scholar 

  22. Anotai, J., Su, C.C., Tsai, Y.C., and Lu, M.C., J. Hazard. Mater., 2010, vol. 183, pp. 888–893.

    Article  CAS  Google Scholar 

  23. Babuponnusami, A. and Muthukumar, K., J. Environ. Chem. Eng., 2014, vol. 2, pp. 557–572.

    Article  CAS  Google Scholar 

  24. Vasudevan, S., J. Water Process Eng., 2014, vol. 2, pp. 53–57.

    Article  Google Scholar 

  25. Salari, D., Niaei, A., Khataee, A., and Zarei, M., J. Electroanal. Chem., 2009, vol. 629, pp. 117–125.

    Article  CAS  Google Scholar 

  26. Batoeva, A.A. and Tsybikova, B.A., Russ. J. Appl. Chem., 2015, vol. 83, no. 11, pp. 1948–1951.

    Article  Google Scholar 

  27. Lacasa, E., Cañizares, P., Sáez, C., et al., Chem. Eng. J., 2011, vol. 171, pp. 1012–1017.

    Article  CAS  Google Scholar 

  28. Kumar, N.S. and Goel, S., J. Hazard. Mater., 2010, vol. 173, pp. 528–533.

    Article  CAS  Google Scholar 

  29. Lur’e, Yu.Yu., Analiticheskaya khimiya promyshlennykh stochnykh vod (Analytical Chemistry of Industrial Wastewaters), Moscow Khimiya, 1984.

    Google Scholar 

  30. Kenova, T.A., Vasil’eva, I.S., and Kornienko, V.L., Russ. J. Appl. Chem., 2015, vol. 88, no. 4, pp. 692–697.

    Article  Google Scholar 

  31. Barrera-Diaz, C., Bilyeu, B., Roa, G., and Bernal-Martinaz, L., Sep. Purif. Rev., 2011, vol. 40, pp. 1–24.

    Article  CAS  Google Scholar 

  32. Can, O.T., Bayramoglu, M., and Kobya, M., Ind. Eng. Chem. Res., 2003, vol. 42, pp. 3391–3396.

    Article  CAS  Google Scholar 

  33. Trompette, J.L., Arurault, L., Fontorbes, S., and Massot, L., Electrochim. Acta, 2010, vol. 55, pp. 2901–2910.

    Article  CAS  Google Scholar 

  34. Moreno, C.H.A., Cocke, D.L., Gomes, J.A.G., et al., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 2275–2282.

    Article  Google Scholar 

  35. Brillas, E., Sauleda, R., and Casado, J., J. Electrochem. Soc., 1997, vol. 144, pp. 2374–2379.

    Article  CAS  Google Scholar 

  36. Gutiérres, C., Hansen, H.K., Nuñez, P., et al., J. Appl. Electrochem., 2010, vol. 40, pp. 1031–1038.

    Article  Google Scholar 

  37. Botz, M.M., Dimitriadis, D., Polglase, T., et al., Min. Metal. Process., 2001, vol. 18, pp. 126–132.

    CAS  Google Scholar 

  38. Moussavi, G., Majidi, F., and Farzadkia, V., Desalination, 2011, vol. 280, pp. 127–133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kenova.

Additional information

Original Russian Text © T.A. Kenova, I.S. Vasil’eva, V.L. Kornienko, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 9, pp. 1148−1154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenova, T.A., Vasil’eva, I.S. & Kornienko, V.L. Removal of thiocyanates and heavy metal ions from simulated wastewater solutions by electro- and peroxyelectrocoagulation. Russ J Appl Chem 89, 1440–1446 (2016). https://doi.org/10.1134/S1070427216090093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216090093

Navigation