Skip to main content
Log in

Copper nanowire arrays surface wettability control using atomic layer deposition of TiO2

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Template two step electrodeposition method and atomic layer deposition were used to synthesize copper nanowires of varied length (1.2 to 26.2 μm) and copper nanowires coated with titanium dioxide. As a result of the atomic layer deposition of TiO2, coated nanowires demonstrated an up to 10-fold decrease in the wetting angle, compared with uncoated nanowires. It was found the dissipation rate is substantially higher for nanowires coated by the atomic layer deposition method (100 s) as compared with the uncoated copper nanowires (400 s), which assumes the positive properties of water propagation along the surface, necessary for improving the heat transfer. It was also found that the water contact angle for uncoated nanowires and those coated with TiO2 by the atomic layer deposition (ALD) gradually increases as the samples are kept in air. A gradual increase in wettability was also observed for smooth silicon wafers coated by ALD of TiO2, which were exposed to air. On the coated silicon substrates, the wetting angle gradually increased from 10° to approximately 56° in the course of four days. In addition, it was shown that copper nanowires coated with TiO2 by the atomic layer deposition method have an excellent corrosion resistance, compared with uncoated nanowires, when brought in contact with air and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, X., Wang, H., Liao, Q., et al., Exp. Therm. Fluid Sci., 2009, vol. 33, no. 6, pp. 947–954.

    Article  CAS  Google Scholar 

  2. Glassford, S., Chan, K.L.A., Byrne, B., and Kazarian, S.G., Langmuir, 2012, vol. 28, no. 6, pp. 3174–3179.

    Article  CAS  Google Scholar 

  3. Shin, Y.N., Kim, B.S., Ahn, H.H., et al., Appl. Surf. Sci., 2008, vol. 255, no. 2, pp. 293–296.

    Article  CAS  Google Scholar 

  4. Ju, J., Xiao, K., Yao, X., et al., Adv. Mater., 2013, vol. 25, no. 41, pp. 5937–5942.

    Article  CAS  Google Scholar 

  5. Daniel, S., Chaudhury, M.K., and Chen, J.C., Science, 2001, vol. 291, no. 5504, pp. 633–636.

    Article  CAS  Google Scholar 

  6. Liao, Q., Gu, Y.B., Zhu, X., et al., J. Enhanced Heat Transfer, 2007, vol. 14, no. 3, pp. 243–256.

    Article  CAS  Google Scholar 

  7. Chandesris, B., Soupremanien, U., and Dunoyer, N., Colloids Surf., A, 2013, vol. 434, pp. 126–135.

    Article  CAS  Google Scholar 

  8. Meyyappan, S., Shadnam, M.R., and Amirfazli, A., Langmuir, 2008, vol. 24, no. 6, pp. 2892–2899.

    Article  CAS  Google Scholar 

  9. Yu, X., Wang, Z., Jiang, Y., and Zhang, X., Langmuir, 2006, vol. 22, no. 10, pp. 4483–4486.

    Article  CAS  Google Scholar 

  10. Hu, B., Xue, L., Yang, P., and Han, Y., Langmuir, 2010, vol. 26, no. 9, pp. 6350–6356.

    Article  CAS  Google Scholar 

  11. Wang, L., Peng, B., and Su, Z., Langmuir, 2010, vol. 26, no. 14, pp. 12203–12208.

    Article  CAS  Google Scholar 

  12. Ito, Y., Heydari, M., Hashimoto, A., et al., Langmuir, 2007, vol. 23, no. 4, pp. 1845–1850.

    Article  CAS  Google Scholar 

  13. Zhang, J., Xue, L., and Han, Y., Langmuir, 2005, vol. 21, no. 1, pp. 5–8.

    Article  Google Scholar 

  14. Li, X., Dai, H., Tan, S., et al., J. Colloid Interface Sci., 2009, vol. 340, no. 1, pp. 93–97.

    Article  CAS  Google Scholar 

  15. Sun, C., Zhao, X.-W., Han, Y.-H., and Gu, Z.-Z., Thin Solid Films, 2008, vol. 516, no. 12, pp. 4059–4063.

    Article  CAS  Google Scholar 

  16. Huang, Z., Lu, Y., Qin, H., et al., Adv. Eng. Mater., 2012, vol. 14, no. 7, pp. 491–496.

    Article  CAS  Google Scholar 

  17. Zhang Yong, C.J., Pi Pihui, Wen Xiufang, et al., Prog. Chem., 2011, vol. 23, no. 12, pp. 2457–2465.

    Google Scholar 

  18. Hu, Y., Cheng, J., Zhang, W., et al., Int. J. Heat Mass Transf., 2013, vol. 67, pp. 416–419.

    Article  CAS  Google Scholar 

  19. Das, A.K., Das, P.K., and Saha, P., Exp. Therm. Fluid Sci., 2007, vol. 31, no. 8, pp. 967–977.

    Article  CAS  Google Scholar 

  20. Phan, H.T., Caney, N., Marty, P., et al., Int. J. Heat Mass Transf., 2009, vol. 52, nos. 23–24, pp. 5459–5471.

    Article  CAS  Google Scholar 

  21. Wu, W., Bostanci, H., Chow, L.C., et al., Int. J. Heat Mass Transf., 2010, vol. 53, nos. 9–10, pp. 1773–1777.

    Article  CAS  Google Scholar 

  22. Takata, Y., Hidaka, S., Cao, J.M., et al., Energy, 2005, vol. 30, nos. 2–4, pp. 209–220.

    Article  CAS  Google Scholar 

  23. Phan, H.T., Caney, N., Marty, P., et al., C. R. Méc., 2009, vol. 337, no. 5, pp. 251–259.

    Article  CAS  Google Scholar 

  24. Chen, R., Lu, M.-C., Srinivasan, V., et al., Nano Lett., 2009, vol. 9, no. 2, pp. 548–553.

    Article  Google Scholar 

  25. Patankar, N.A., Soft Matter, 2010, vol. 6, no. 8, p. 1613.

    Article  CAS  Google Scholar 

  26. George, S.M., Chem. Rev., 2010, vol. 110, no. 1, pp. 111–131.

    Article  CAS  Google Scholar 

  27. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vap. Deposition, 2015, vol. 21, nos. 10–11–12, pp. 216–240.

    Article  CAS  Google Scholar 

  28. Elam, J.W., Routkevitch, D., Mardilovich, P.P., and George, S.M., Chem. Mater., 2003, vol. 15, no. 18, pp. 3507–3517.

    Article  CAS  Google Scholar 

  29. Kuznicka, B., Eng. Failure Anal., 2009, vol. 16, no. 7, pp. 2382–2387.

    Article  CAS  Google Scholar 

  30. Ashkarran, A.A. and Mohammadizadeh, M.R., Mater. Res. Bull., 2008, vol. 43, no. 3, pp. 522–530.

    Article  CAS  Google Scholar 

  31. Taberna, P.L., Mitra, S., Poizot, P., et al., Nat. Mater., 2006, vol. 5, no. 7, pp. 567–573.

    Article  CAS  Google Scholar 

  32. Puurunen, R.L., J. Appl. Phys., 2005, vol. 97, no. 12, p. 121301.

    Article  Google Scholar 

  33. Ritala, M., Leskelä, M., Nykänen, E., et al., Thin Solid Films, 1993, vol. 225, nos. 1–2, pp. 288–295.

    Article  CAS  Google Scholar 

  34. Caputo, G., Cingolani, R., Cozzoli, P.D., Athanassiou, A., Phys. Chem. Chem. Phys., 2009, vol. 11, no. 19, pp. 3692–3700.

    Article  CAS  Google Scholar 

  35. Kusumaatmaja, H., Blow, M.L., Dupuis, A., and Yeomans, J.M., EPL (Europhys. Lett.), 2008, vol. 81, no. 3, p. 36003.

    Article  Google Scholar 

  36. Plawsky, J.L., Ojha, M., Chatterjee, A., and Wayner, P.C. Jr., Chem. Eng. Commun., 2008, vol. 196, no. 5, pp. 658–696.

    Article  Google Scholar 

  37. Gallyamov, M., Nikitin, L., Nikolaev, A., et al., Kolloid. Zh., 2007, vol. 69, no. 4, pp. 448–462.

    Google Scholar 

  38. Bhattacharya, P., Gohil, S., Mazher, J., Nanotechnology, 2008, vol. 19, no. 7, p. 075709.

    Article  Google Scholar 

  39. Wang, R., Hashimoto, K., and Fujishima, A., Nature, 1997, vol. 388, no. 6641, pp. 431–432.

    Article  CAS  Google Scholar 

  40. Malygin, A.A., Soros. Obrazovat. Zh., 2004, vol. 8, no. 4, pp. 32–37.

    Google Scholar 

  41. Aarik, J., Aidla, A., Mändar, H., and Sammelselg, V., J. Cryst. Growth, 2000, vol. 220, no. 4, pp. 531–537.

    Article  CAS  Google Scholar 

  42. Abdulagatov, A.I., Yan, Y., Cooper, J.R., et al., ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 12, pp. 593–601.

    Article  Google Scholar 

  43. Wang, R., Hashimoto, K., Fujishima, A., et al., Adv. Mater., 1998, vol. 10, no. 2, pp. 135–138.

    Article  Google Scholar 

  44. McHale, G., Aqil, S., Shirtcliffe, N.J., et al., Langmuir, 2005, vol. 21, no. 24, pp. 11053–11060.

    Article  CAS  Google Scholar 

  45. Tsai, P., Lammertink, R.G.H., Wessling, M., and Lohse, D., Phys. Rev. Lett., 2010, vol. 104, no. 11, pp. 116102.

    Article  Google Scholar 

  46. Watanabe, T., J. Ceram. Soc. Japan, 2009, vol. 117, no. 1372, pp. 1285–1292.

    Article  CAS  Google Scholar 

  47. Kietzig, A.-M., Hatzikiriakos, S.G., and Englezos, P., Lang muir, 2009, vol. 25, no. 8, pp. 4821–4827.

    Article  CAS  Google Scholar 

  48. Birch, W., Carré, A., and Mittal, K.L., Developments in Surface Contamination and Cleaning, New York: Elsevier, 2008.

    Google Scholar 

  49. Kung, H.H., Transition Metal Oxides–-Surface Chemistry and Catalysis, Amsterdam Elsevier, 1989, vol.45.

  50. McHale, G., Shirtcliffe, N.J., and Newton, M.I., Langmuir, 2004, vol. 20, no. 23, pp. 10146–10149.

    Article  CAS  Google Scholar 

  51. Triani, G., Campbell, J.A., and Evans, P.J., Thin Solid Films, 2010, vol. 518, no. 12, pp. 3182–3189.

    Article  CAS  Google Scholar 

  52. Li, Z., Wang, Y., Kozbial, A., et al., Nat. Mater., 2013, vol. 12, no. 10, pp. 925–931.

    Article  CAS  Google Scholar 

  53. Zheng, J., Bogaerts, W., and Lorenzetto, P., Fusion Eng. Des., 2002, vols. 61–62, pp. 649–657.

    Article  Google Scholar 

  54. Sobue, K., Sugahara, A., Nakata, T., et al., Surf. Coat. Technol., 2003, vols. 169–170, pp. 662–665.

    Article  Google Scholar 

  55. Shan, C.X., Hou, X., and Choy, K.-L., Surf. Coat. Technol., 2008, vol. 202, no. 11, pp. 2399–2402.

    Article  CAS  Google Scholar 

  56. Shan, C.X., Hou, X., Choy, K.-L., and Choquet, P., Surf. Coat. Technol., 2008, vol. 202, no. 10, pp. 2147–2151.

    Article  CAS  Google Scholar 

  57. Abdulagatov, A., Yan, Y., Cooper, J.R., et al., ACS Appl. Mater. Interfaces, 2011, vol. 3, pp. 4593–4601.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Additional information

Original Russian Text © A.I. Abdulagatov, F.F. Orudzhev, M.Kh. Rabadanov, I.M. Abdulagatov, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 8, pp. 1015−1023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulagatov, A.I., Orudzhev, F.F., Rabadanov, M.K. et al. Copper nanowire arrays surface wettability control using atomic layer deposition of TiO2 . Russ J Appl Chem 89, 1265–1273 (2016). https://doi.org/10.1134/S1070427216080085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216080085

Navigation