Skip to main content
Log in

Formation of nonstoichiometric titanium oxides nanoparticles Ti n O2n–1 upon heat-treatments of titanium hydroxide and anatase nanoparticles in a hydrogen flow

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Titania powders with anatase structure and crystallite size ranged from 20 to 27 nm were produced from titanium hydroxide by hydrothermal synthesis. The nanopowders and the initial hydroxide were isothermally heat-treated in a hydrogen flow at temperatures of 00–1000°C for times ranging from 1 to 27.5 h. It was found that the thermal treatment of titanium hydroxide in a reducing atmosphere at 800–900°C yields TiO2 with rutile structure. An unusual thermal stability of the metastable structure of anatase was observed in the case of nanocrystalline TiO2 powders up to a temperature of 900°C at which the anatase–rutile phase transition is observed. It was found that the nonstoichiometry of rutile and anatase powders changes upon a thermal treatment in a hydrogen flow. The heat-treatment in a hydrogen flow at 1000°C for 1 h was shown to lead to the formation of nanoparticles of the Magneli phase with the composition corresponding to Ti9O17 irrespective of the chemical nature of the precursor. The increase of the heat-treatment time at this temperature leads to the appearing of the Magneli phases with the compositions corresponding to Ti8O15 and Ti9O17 and Ti2O3 and Ti3O5 suboxides in addition to the Ti9O17 main phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, D., Chen, C., Baiyee, Z.M., et al., Chem. Rev., 2015, vol. 115, no. 18, pp. 9869–9921.

    Article  CAS  Google Scholar 

  2. Kwon, D.-H., Kim, K.M., Jang, J.H., et al., Nat. Nanotechnol., 2010, vol. 5, no. 2, pp. 148–153.

    Article  CAS  Google Scholar 

  3. Gusev, A.I., Rempel, A.A., and Magerl, A.J., Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides, Berlin: Springer-Verlag, 2001, p. 617.

    Book  Google Scholar 

  4. Cava, R.J., Batlogg, B., Krajewski, J.J., et al., Phys. Rev. B, 1991, vol. 44, no. 13, pp. 6973–6981.

    Article  CAS  Google Scholar 

  5. Smith, J.R., Clarke, R.L., and Walsh, F.C., J. Appl. Electrochem., 1998, vol. 28, no. 10, pp. 1021–1033.

    Article  CAS  Google Scholar 

  6. Han, W.-Q. and Wang, X.-L., Appl. Phys. Lett., 2010, vol. 97, pp. 243104–243107.

    Article  Google Scholar 

  7. Styles, M.J., In Situ Studies of the Structure and Oxidation of Magnŭli Phase Electrodes and Their Application in Molten Salt Electrolysis: PhD thesis, Eng.-Mech. Eng., The University of Melbourne, 2012, p. 343.

    Google Scholar 

  8. Teleki, A. and Pratsisinis, S.E., Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 3724–3747.

    Article  Google Scholar 

  9. Wang, Y., Qin, Y., Li, G., et al., J. Cryst. Growth, 2005, vol. 282, pp. 402–406.

    Article  CAS  Google Scholar 

  10. Hayfield, P.C.S., Development of a New Material: Ti4O7 Monolithic Ebonex® Ceramic, Cambridge: Royal Society of Chemistry, 2002, p. 97.

    Google Scholar 

  11. Qian, S. and Mao, J., J. Mater. Sci.: Mater Electron., 2015, vol. 26, pp. 5166–5172.

    CAS  Google Scholar 

  12. Bullard, D.E. and Lynch, D.C., Metall. Mater. Trans. B, 1997, vol. 28, pp. 1069–1080.

    Article  Google Scholar 

  13. Palmer, R.A., Doan, T.M., Lloyd, P.G., et al., Plasma Chem. Plasma Process., 2002, vol. 22, no. 3, pp. 335–350.

    Article  CAS  Google Scholar 

  14. Zhang, Y.-W., Ding, W.-Z., and Xu, K.-D., Trans. Nonferrous Met. Soc. China, 2005, vol. 15, no. 3, pp. 594–599.

    CAS  Google Scholar 

  15. Binnewies, M., Glaum, R., Schmidt, M., and Schmidt, P., Z. Anorg. Allg. Chem., 2013, vol. 639, no. 2, pp. 219–229.

    Article  CAS  Google Scholar 

  16. Hauf, C., Kniep, R., and Pfaff, G., J. Mater. Sci., 1999, vol. 34, no. 6, pp. 1287–1292.

    Article  CAS  Google Scholar 

  17. Khader, M.M., Kheiri, M.-N., El-Anadouli, B.E., and Ateya, B.G., Phys. Chem., 1993, vol. 97, pp. 6074–6077.

    Article  CAS  Google Scholar 

  18. Lynch, D.C. and Bullard, D.E., Metall. Mater. Trans. B, 1997, vol. 28, pp. 447–453.

    Article  Google Scholar 

  19. Okamoto, H., JPED, 2011, vol. 32, no. 5, pp. 473–474.

    Article  CAS  Google Scholar 

  20. Kolen’ko, Yu.V., Burukhin, A.A., Churagulov, B.R., et al., J. Inorg. Chem., 2002, vol. 47, no. 11, pp. 1609–1615.

    Google Scholar 

  21. Lutterotti, L., Nucl. Instrum. Meth. (B), 2010, vol. 268, pp. 334–340.

    Article  CAS  Google Scholar 

  22. Ida, T., Shimazaaki, S., Hibino, H., and Toraya, H., J. Appl. Cryst., 2003, vol. 36, pp. 1107–1115.

    Article  CAS  Google Scholar 

  23. Depero, L.E., Sangaletti, L., Allieri, B., et al., J. Cryst. Growth, 1999, vols. 198–199, pp. 516–520.

    Article  Google Scholar 

  24. Hanaor, D.A.H. and Sorrell, C.C., J. Mater. Sci., 2011, vol. 46, pp. 855–874.

    Article  CAS  Google Scholar 

  25. Satoh, N., Nakashima, T., and Yamamoto, K., Sci. Rep., 2013, vol. 3, Article no. 1959. http://dx.doi.org/10.1038/srep01959.

  26. Nolan, N., Seery, M., and Pillai, S., J. Phys. Chem. C, 2009, vol. 113, pp. 16151–16157.

    Article  CAS  Google Scholar 

  27. Hashimoto, K., Irie, H., and Fujishima, A., Jpn. J. Appl. Phys., 2005, vol. 44, no. 12, pp. 8269–8285.

    Article  CAS  Google Scholar 

  28. Katzke, H. and Schlğl, R., J. Acta Cryst. B, 2003, vol. 59, pp. 456–462.

    Article  CAS  Google Scholar 

  29. Syarif, D.G., Miyashita, A., Yamaki, T., et al., Appl. Surf. Sci., 2002, vol. 193, pp. 287–292.

    Article  CAS  Google Scholar 

  30. Byrappa, K. and Adschiri, T., Prog. Cryst. Growth Charact. Mater., 2007, vol. 53, no. 2, pp. 117–166.

    Article  CAS  Google Scholar 

  31. Makinson, J.D., Lee, J.S., Magner, S.H., et al., Adv. X-Ray Anal., 2000, vol. 42, pp. 407–411.

    CAS  Google Scholar 

  32. Jenkins, R. and Snyder, R.L., Hoboken, New York: John Wiley & Sons, Inc., 1996, p. 432.

    Google Scholar 

  33. Melikhov, I.V., Ros. Khim. Zh. (Zh. Ros. Khim. O–va im. D. I. Mendeleeva), 2002, vol. 46, no. 5, pp. 7–14.

    CAS  Google Scholar 

  34. Ranade, M.R., Navrotsky, A., Zhang, H.Z., et al., Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 6476–6481.

    Article  CAS  Google Scholar 

  35. Uvarov, N.F. and Boldyrev, V.V., Rus. Chem. Rev., 2001, vol. 70, no. 4, pp. 265–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Vasilevskaia.

Additional information

Original Russian Text © A.K. Vasilevskaia, V.I. Popkov, A.A. Valeeva, A.A. Rempel’, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 8, pp. 961−970.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilevskaia, A.K., Popkov, V.I., Valeeva, A.A. et al. Formation of nonstoichiometric titanium oxides nanoparticles Ti n O2n–1 upon heat-treatments of titanium hydroxide and anatase nanoparticles in a hydrogen flow. Russ J Appl Chem 89, 1211–1220 (2016). https://doi.org/10.1134/S1070427216080012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216080012

Navigation