Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders

Abstract

Nanocrystalline cobalt ferrite powders were synthesized by hydrothermal treatment of co-precipitated hydroxides in the conditions of an external heating of the autoclave and under microwave heating of the reaction medium. In the microwave-heating mode, the prenucleation clusters formed under ultrasonic treatment of a suspended mixture of cobalt and iron hydroxides is transformed into CoFe2O4 nanocrystals during the first minute of synthesis at a temperature satisfying the equilibrium-existence conditions of cobalt ferrite. In the case of a slow external heating of the autoclave, there is no effect of this kind, which is attributed to the disintegration of the prenucleation clusters before the dehydration of the hydroxides to give crystalline cobalt ferrite becomes thermodynamically favorable. The main factor determining the increase in the formation rate of crystallites of CoFe2O4 nanopowders and the decrease in their size is the generation of prenucleation centers in the starting mixture of cobalt and iron hydroxides.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Amiri, S. and Shokrollahi, H., Mater. Sci. Eng., C, 2013, vol. 33, no. 1, pp. 1–8.

    CAS  Article  Google Scholar 

  2. 2.

    Munjal, S., Khare, N., Nehate, C., and Koul, V., J. Magn. Magn. Mater., 2016, vol. 404, pp. 166–169.

    CAS  Article  Google Scholar 

  3. 3.

    Wang, G., Ma, Y., Mu, J., et al., Appl. Surf. Sci., 2016, vol. 365, pp. 114–119.

    CAS  Article  Google Scholar 

  4. 4.

    Joshi, H.M., Lin, Y.P., Aslam, M., et al., J. Phys. Chem. C, 2009, vol. 113, pp. 17761–17767.

    CAS  Article  Google Scholar 

  5. 5.

    Verde, E.L., Landi, G.T., Gomes, J.A., et al., J. Appl. Phys., 2012, vol. 111, pp. 123902.

    Article  Google Scholar 

  6. 6.

    Park, B.J., Choi, K.H., Nam, K.C., et al., J. Biomed. Nanotechnol., 2015, vol. 11, pp. 226–235.

    CAS  Article  Google Scholar 

  7. 7.

    Xiangfeng, C., Dongli, J., Yu, G., and Chenmou, Z., Sens. Actuators B, 2006, vol. 120, no. 1, pp. 177–181.

    Article  Google Scholar 

  8. 8.

    Kumbhar, V.S., Jagadale, A.D., Shinde, N.M., and Lokhande, C.D., Appl. Surf. Sci., 2012, vol. 259, pp. 39–43.

    CAS  Article  Google Scholar 

  9. 9.

    Mathew, D.S. and Juang, R.S., Chem. Eng. J., 2007, vol. 129, pp. 51–65.

    CAS  Article  Google Scholar 

  10. 10.

    Kim, Y.I., Kim, D., and Lee, C.S., Phys. B, 2003, vol. 337, pp. 42–51.

    CAS  Article  Google Scholar 

  11. 11.

    Manova, E., Kunev, B., Paneva, D., et al., Chem. Mater., 2004, vol. 16, pp. 5689–5692.

    CAS  Article  Google Scholar 

  12. 12.

    Lavela, P. and Tirado, J.L., J. Power Sources, 2007, vol. 172, pp. 379–387.

    CAS  Article  Google Scholar 

  13. 13.

    Saffari, J., Ghanbari, D., Mir, N., and Khandan-Barani, K., J. Ind. Eng. Chem., 2014, vol. 20, pp. 4119–4123.

    CAS  Article  Google Scholar 

  14. 14.

    Baranchikov, A.Y., Ivanov, V.K., and Tretyakov, Yu.D., Russ. Chem. Rev., 2007, vol. 76, no. 2, pp. 133–151.

    CAS  Article  Google Scholar 

  15. 15.

    Solanki, N., Khatri, H., and Jotania, R.B., AIP Conf. Proc., 2016, vol. 1728, pp. 020035-1–020035-4.

    Article  Google Scholar 

  16. 16.

    Ahmed, M.A., Okasha, N., Mansour, S.F., and El-dek, S.I., J. Alloys Compd., 2010, vol. 496, pp. 345–350.

    CAS  Article  Google Scholar 

  17. 17.

    Komarneni, S., Current Sci., 2003, vol. 85, no. 12, pp. 1730–1734.

    CAS  Google Scholar 

  18. 18.

    Bousquet-Berthelin, C., Chaumont, D., and Stuerga, D., J. Solid State Chem., 2008, vol. 181, no. 3, pp. 616–622.

    CAS  Article  Google Scholar 

  19. 19.

    Balakhonov, S.V., Ivanov, V.K., Barantchikov, A.E., and Churagulov, B.R., Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 4, pp. 66–74.

    Google Scholar 

  20. 20.

    Lee, J.-H., Kim, C.-K., Katoh, S., and Murakami, R., J. Alloys Compd., 2001, vol. 325, nos. 1–2, pp. 276–280.

    CAS  Article  Google Scholar 

  21. 21.

    Seema Verma, Joy, P.A., Khollam, Y.B., et al., Mater. Lett., 2004, vol. 58, no. 6, pp. 1092–1095.

    Article  Google Scholar 

  22. 22.

    Kuznetsova, V.A., Almjasheva, O.V., and Gusarov, V.V., Glass Phys. Chem., 2009, vol. 35, no. 2, pp. 205–209.

    CAS  Article  Google Scholar 

  23. 23.

    Baranchikov, A.E., Ivanov, V.K., and Tret’yakov, Y.D., Dokl. Chem., 2012, vol. 447, no. 1, pp. 241–243.

    CAS  Article  Google Scholar 

  24. 24.

    Lebedev, V.A., Gavrilov, A.I., Shaporev, A.S., et al., Dokl. Chem., 2012, vol. 444, no. 1, pp. 117–119.

    CAS  Article  Google Scholar 

  25. 25.

    Dolgopolova, E.A., Ivanova, O.S., Ivanov, V.K., et al., Russ. J. Inorg. Chem., 2012, vol. 57, no. 10, pp. 1303–1307.

    CAS  Article  Google Scholar 

  26. 26.

    Komlev, A.A. and Ilhan, S., Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 4, pp. 114–121.

    Google Scholar 

  27. 27.

    Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, pp. 1959–1964.

    Google Scholar 

  28. 28.

    Pozhidaeva, O.V., Korytkova, E.N., Romanov, D.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 6, pp. 849–853.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. V. Almjasheva.

Additional information

Original Russian Text © O.V. Almjasheva, V.V. Gusarov, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 6, pp. 689−695.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Almjasheva, O.V., Gusarov, V.V. Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders. Russ J Appl Chem 89, 851–856 (2016). https://doi.org/10.1134/S107042721606001X

Download citation