Skip to main content
Log in

Composite tribological materials based on molybdenum disulfide nanoparticles and polytetrafluoroethylene microgranules

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Tribological materials based on molybdenum disulfide nanoparticles localized on the surface of ultradispersed polytetrafluoroethylene were prepared. The composition and properties of the new composite materials were studied. Introduction of ultradispersed additives based on polytetrafluoroethylene with MoS2 and on polytetrafluoroethylene and nanodiamonds prepared by detonation synthesis (taken as reference samples) decreases the viscosity of MS-20 aviation oil. The dependence of the friction coefficient on the Sommerfeld number for the composites obtained was examined. Introduction of additives leads to a decrease in the friction coefficient with increasing linear sliding velocity, in contrast to the initial oil for which the trend is opposite. The dependence of the friction coefficient on the concentration of additives in the initial oil was demonstrated. Modification of polytetrafluoroethylene microgranules with 3 wt % MoS2 nanoparticles allows the amount of additive to the oil to be considerably reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kablov, E.N., Nauka i Zhizn’, 2010, no. 4, pp. 2–7.

    Google Scholar 

  2. Kablov, E.N., Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 3–33.

    Google Scholar 

  3. Kablov, E.N., Met. Evraz., 2012, no. 3, pp. 10–15.

    Google Scholar 

  4. Kablov, E.N., Kondrashov, S.V., and Yurkov, G.Yu., Nanotechnol. Russia, 2013, vol. 8, nos. 3–4, pp. 163–185.

    Article  Google Scholar 

  5. Mel’nichenko, I.M., Gribailo, A.P., and Zamyatin, V.O., Tren. Iznos, 1980, vol. 1, no. 4, pp. 674–677.

    Google Scholar 

  6. Sunqing, Q., Junxiu, D., and Guoxu, Ch., Lubricat. Sci., 1999, vol. 11, pp. 217–226.

    Article  Google Scholar 

  7. Chou, Ch.-Ch. and Lee, S.-H., Wear, 2010, vol. 269, pp. 757–762.

    Article  CAS  Google Scholar 

  8. Pawlak, Z., Tribochemistry of Lubricating Oils, Amsterdam: Elsevier, 2003.

    Google Scholar 

  9. Sytyi, Yu.V., Sagomonova, V.A., Yurkov, G.Yu., and Tselikin, V.V., Aviats. Prom–st., 2013, no. 2, pp. 50–52.

    Google Scholar 

  10. Gryaznov, V.I., Petrova, G.N., Yurkov, G.Yu., and Buznik, V.M., Aviats. Mater. Tekhnol., 2014, no. 1, pp. 25–29.

    Google Scholar 

  11. Akatenkov, R.V., Anoshkin, I.V., Belyaev, A.A., et al., Aviats. Mater. Tekhnol., 2011, no. 1 (18), pp. 35–42.

    Google Scholar 

  12. Khokhlov, Yu.A., Berezin, N.M., Bogatov, V.A., and Krynin, A.G., Aviats. Mater. Tekhnol., 2015, no. 4 (37), pp. 67–71.

    Google Scholar 

  13. Buznik, V.M. and Yurkov, G.Yu., Vopr. Materialoved., 2012, no. 4 (72), pp. 133–149.

    Google Scholar 

  14. Wang, Yu. and Yan, F., Wear, 2006, vol. 261, pp. 1359–1366.

    Article  CAS  Google Scholar 

  15. Okhlopklova, A.A., Adrianova, O.A., and Popov, S.N., Modifikatsiya polimerov ul’tradispersnymi polimerami (Modification of Polymers with Ultradispersed Polymers), Yakutsk: Yakutskii Filial Izd. Sib. Otd. Ross. Akad. Nauk, 2003.

    Google Scholar 

  16. Bahadur, S. and Gong, D.-L., Wear, 1992, vol. 157, pp. 229–243.

    Article  CAS  Google Scholar 

  17. Aderikha, V.N., Krasnov, A. P., Shapovalov, V.A., and Golub, A.S., Wear, 2014, vol. 320, pp. 135–142.

    Article  CAS  Google Scholar 

  18. Sun, L.-H., Yang, Zh.-G., and Li, X.-H., Polym. Eng. Sci., 2008, vol. 48, no. 9, pp. 1824–1832.

    Article  CAS  Google Scholar 

  19. Suzuki, M. and Prat, Ph., Wear, 1999, vols. 225–229, pp. 995–1003.

    Article  Google Scholar 

  20. Yurkov, G.Yu., Baranov, D.A., Kozinkin, A.V., et al., Inorg. Mater., 2006, vol. 42, no. 9, pp. 1012–1019.

    Article  CAS  Google Scholar 

  21. Ushakov, N.M., Yurkov, G.Yu., Zapsis, K.V., et al., Opt. Spectrosc., 2006, vol. 100, no. 3, pp. 459–464.

    Article  Google Scholar 

  22. Buznik, V.M., Ross. Nanotekhnol., 2009, vol. 4, nos. 11–12, pp. 35–41.

    Google Scholar 

  23. RF Patent 2348580, Publ. 2009.

  24. Myshkin, N.K. and Petrokovets, M.I., Trenie, smazka, iznos (Friction, Lubrication, Wear), Moscow: Fizmatlit, 2007.

    Google Scholar 

  25. Kalin, M., Kogovsek, J., and Remskar, M., Wear, 2013, vol. 303, pp. 480–485.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Shashkeev.

Additional information

Original Russian Text © K.A. Shashkeev, O.V. Popkov, G.Yu. Yurkov, S.V. Kondrashov, A.A. Ashmarin, M.I. Biryukova, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 4, pp. 532−538.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashkeev, K.A., Popkov, O.V., Yurkov, G.Y. et al. Composite tribological materials based on molybdenum disulfide nanoparticles and polytetrafluoroethylene microgranules. Russ J Appl Chem 89, 644–649 (2016). https://doi.org/10.1134/S1070427216040194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216040194

Navigation