Skip to main content
Log in

Extension of the time–temperature–transformation diagram taking into account thermal properties of components for optimizing the curing of polymer matrix composites

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Time–temperature–transformation diagrams are convenient forms of presenting rheokinetic data on curing of thermosetting binders. However, in curing of thick samples, because of the heat release in curing in combination with relatively low values of thermal conductivity and heat capacity of the majority of thermosetting binders, the rheokinetic features can differ significantly from those observed with thin films and small samples. The paper deals with the construction of the three-dimensional time–temperature–transformation diagram taking into account the thermal properties of the binder. The changes in curing dynamics and appearance of temperature gradients inside the sample with increasing thickness of the binder layer being cured are taken into account. The use of the extended diagram for optimizing the curing conditions for polymer matrix composites is suggested and considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kablov, E.N., Aviats. Mater. Tekhnol., 2015, vol. 34, no. 1, pp. 3–33.

    Google Scholar 

  2. Chawla, K.K., Matrix composites: Science and Engineering, New York: Springer, 2012.

    Google Scholar 

  3. Kablov, E.N., Met. Evraz., 2015, no. 1, pp. 36–39.

    Google Scholar 

  4. Mukhametov, R.R., Dolgova, E.V., Merkulova, Yu.I., and Dushin, M.I., Aviats. Mater. Tekhnol., 2014, no. 4, pp. 53–57.

    Google Scholar 

  5. Guseva, M.A., Aviats. Mater. Tekhnol., 2015, no. 2, pp. 45–50.

    Google Scholar 

  6. Menczel, J.D. and Prime, R.B., Thermal Analysis of Polymers: Fundamentals and Applications, Hoboken: Wiley, 2009.

    Book  Google Scholar 

  7. Pascault, J.P., Sautereau, H., Verdu, J., and Williams, R.J.J., Thermosetting Polymers, New York: Dekker, 2002.

    Book  Google Scholar 

  8. Enns, J.B. and Gillham, J.K., J. Appl. Polym. Sci., 1983, vol. 28, no. 8, pp. 2567–2591.

    Article  CAS  Google Scholar 

  9. Davenport, E.S. and Bain, E.C., Trans. Am. Inst. Mining Metall. Eng., 1930, vol. 90, pp. 117–154.

    Google Scholar 

  10. Kablov, E.N., Kondrashov, S.V., and Yurkov, G.Y., Nanotechnol. Russ., 2013, vol. 8, nos. 3–4, pp. 163–185.

    Article  Google Scholar 

  11. Henry, A., Annu. Rev. Heat Transfer, 2013, vol. 17, ch. 13, pp. 485–520.

    Article  Google Scholar 

  12. Khaskov, M.A., Fibre Chem., 2015, vol. 47, no. 1, pp. 24–33.

    Article  CAS  Google Scholar 

  13. Khaskov, M.A., Vopr. Materialoved., 2014, vol. 79, no. 3, pp. 138–144.

    Google Scholar 

  14. Hardis, R., Jessop, J.L.P., Peters, F.E., and Kessler, M.R., Composites: Part A, 2013, vol. 49, pp. 100–108.

    Article  CAS  Google Scholar 

  15. Saad, G.R. and Eldin, A.F.S., J. Therm. Anal. Calorim., 2012, vol. 110, pp. 1425–1430.

    Article  CAS  Google Scholar 

  16. Flammersheim, H.-J. and Opfermann, J.R., Macromol. Mater. Eng., 2001, vol. 286, no. 3, pp. 143–150.

    Article  CAS  Google Scholar 

  17. Khaskov, M.A., Russ. J. Appl. Chem., 2014, vol. 87, no. 3, pp. 336–345.

    Article  CAS  Google Scholar 

  18. Goncharov, V.A. and Raskutin, A.E., Aviats. Mater. Tekhnol., 2012, no. S, pp. 286–291.

    Google Scholar 

  19. Bogetti, T.A. and Gillespie, J.W., Cure Simulation of Thick Thermosetting Composites, Agency Report of US Army Ballistic Research Laboratory, 1990, no. ATTN: SLCBR-DD-T.

    Google Scholar 

  20. Verhoeff, J., Experimental Study of the Thermal Explosion of Liquids, Rijswijk: Prins Maurits Laboratorium, 1983.

    Google Scholar 

  21. Chern, B.-C., Moon, T.J., Howell, J.R., and Tan, W., J. Compos. Mater., 2002, vol. 36, no. 17, pp. 2061–2072.

    Article  CAS  Google Scholar 

  22. Krevelen, D.W. van and Nijenhuis, K. te, Properties of Polymers. Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, 2009, 4th ed.

    Google Scholar 

  23. Khaskov, M.A., Grebeneva, T.A., and Babin, A.N., Nanostrukt. Kompoz., 2014, vol. 6, no. 1, pp. 49–64.

    CAS  Google Scholar 

  24. Herman, M.F., Encyclopedia of Polymer Science and Technology, Wiley, 2005, vol. 2.

    Google Scholar 

  25. Khrul’kov, A.V., Dushin, M.I., Popov, Yu.O., and Kogan, D.I., Aviats. Mater. Tekhnol., 2012, no. S, pp. 292–301.

    Google Scholar 

  26. Lienhard, J.H., IV, and Lienhard, J.H., V, A Heat Transfer Textbook, Cambridge: Phlogiston, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khaskov.

Additional information

Original Russian Text © M.A. Khaskov, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 4, pp. 510−518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaskov, M.A. Extension of the time–temperature–transformation diagram taking into account thermal properties of components for optimizing the curing of polymer matrix composites. Russ J Appl Chem 89, 622–630 (2016). https://doi.org/10.1134/S1070427216040169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216040169

Navigation