Skip to main content
Log in

Influence of the conditions of hydrogenation treatment of black oil on the yield and properties of the products obtained

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The conversion of black oil in hydrogen (hydroconversion) and nitrogen (pyrolysis) media was studied. The influence of the hydrogen pressure and temperature of the hydrotreating of black oil on the yield and properties of the resulting liquid hydrocarbons was examined. Hydrogen actively participates in the conversion of kerogen (major organic component of black oil), which leads to an increase in the conversion of the organic matter, to an increase in the yield of liquid hydrocarbon products, and to improvement of their quality, compared to pyrolysis. The highest conversion of organic carbon (91.7%) and the maximal yield of liquid hydrocarbons (30.7 wt %) were reached in a hydrogen medium at a pressure of 10.0 MPa and a temperature of 400°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gwyn, J.E., Fuel Process. Technol., 2001, vol. 70, no. 1, pp. 27–40.

    Article  CAS  Google Scholar 

  2. Dyni, J.R., Survey of Energy Resources, Clarke, A.W. and Trinnaman, J.A., Eds., World Energy Council, 2010, pp. 93–122, http://www.worldenergy.org/wp-content/uploads/2012/09/ser_2010_report_1.pdf.

  3. Kök, M.V. and Pamir, M.R., J. Therm. Anal. Calorim., 1999, vol. 56, no. 2, pp. 953–958.

    Article  Google Scholar 

  4. Speight, J.G., Shale Oil Production Processes, Elsevier, 2012.

    Google Scholar 

  5. Strizhakova, Yu.A. and Usova, T.V., Solid Fuel Chem., 2008, vol. 42, no. 4, pp. 197–201.

    Article  Google Scholar 

  6. Wen, C.S. and Kobylinski, T.P., Fuel, 1983, vol. 62, no. 11, pp. 1269–1273.

    Article  CAS  Google Scholar 

  7. Schlinger, W.G. and Jesse, D.R., Ind. Eng. Chem. Proc. Des. Dev., 1968, vol. 7, no. 2, pp. 275–277.

    Article  CAS  Google Scholar 

  8. Roberts, M.J., Rue, D.M., and Lau, F.S., Fuel, 1992, vol. 71, no. 3, pp. 335–341.

    Article  CAS  Google Scholar 

  9. Mensinger, M.C., Rue, D.M., and Roberts, M.J., Fuel, 1992, vol. 71, no. 12, pp. 1377–1383.

    Article  CAS  Google Scholar 

  10. Roberts, M.J., Rue, D.M., and Lau, F.S., Fuel, 1992, 71, no. 12, pp. 1433–1439.

    Article  CAS  Google Scholar 

  11. Rue, D.M., Fuel, 1992, vol. 71, no. 12, pp. 1441–1446.

    Article  CAS  Google Scholar 

  12. De Souza-Santos, M.L., Fuel, 1994, vol. 73, no. 9, pp. 1459–1465.

    Article  Google Scholar 

  13. Dyni, J.R., Oil Shale, 2003, vol. 20, no. 3, pp. 193–252.

    Google Scholar 

  14. Yan, J., Jiang, X., and Han, X., Energy Fuels, 2009, vol. 23, no. 12, pp. 5792–5797.

    Article  CAS  Google Scholar 

  15. Yan, J., Jiang, X., Han, X., and Liu, J., Fuel, 2013, vol. 104, pp. 307–317.

    Article  CAS  Google Scholar 

  16. Ballice, L., Fuel Process. Technol., 2005, vol. 86, no. 6, pp. 673–690.

    Article  CAS  Google Scholar 

  17. Levy, J.H. and Stuart, W.I., Thermochim. Acta, 1984, vol. 74, nos. 1–3, pp. 227–234.

    Article  CAS  Google Scholar 

  18. Al-Otoom, A.Y., Shawabkeh, R.A., Al-Harahsheh, A.M., and Shawaqfeh, A.T., Energy, 2005, vol. 30, no. 5, pp. 611–619.

    Article  CAS  Google Scholar 

  19. Bhargava, S., Awaja, F., and Subasinghe, N.D., Fuel, 2005, vol. 84, no. 6, pp. 707–715.

    Article  CAS  Google Scholar 

  20. Maia, A.A.B., Angélica, R.S., de Freitas Neves, R., et al., Appl. Clay Sci., 2014, vol. 87, pp. 189–196.

    Article  CAS  Google Scholar 

  21. Jiang, T., Li, G., Qiu, G., et al., Appl. Clay Sci., 2008, vol. 40, nos. 1–4, pp. 81–89.

    Article  CAS  Google Scholar 

  22. Alstadt, K.N., Katti, D.R., and Katti, K.S., Spectrochim. Acta, Part A, 2012, vol. 89, pp. 105–113.

    Article  CAS  Google Scholar 

  23. Kumar, R., Bansal, V., Badhe, R.M., et al., Fuel, 2013, vol. 113, pp. 610–616.

    Article  CAS  Google Scholar 

  24. Chen, Y., Furmann, A., Mastalerz, M., and Schimmelmann, A., Fuel, 2014, vol. 116, pp. 538–549.

    Article  CAS  Google Scholar 

  25. Tong, J., Han, X., Wang, S., and Jiang, X., Energy Fuels, 2011, vol. 25, no. 9, pp. 4006–4013.

    Article  CAS  Google Scholar 

  26. Hoch, M. and Bandara, A., Colloids Surf. A, 2005, vol. 253, nos. 1–3, pp. 117–124.

    Article  CAS  Google Scholar 

  27. Sun, Y., Bai, F., Liu, B., et al., Fuel, 2014, vol. 115, pp. 338–346.

    Article  CAS  Google Scholar 

  28. Xie, W., Gao, Z., Pan, W.-P., et al., Chem. Mater., 2001, vol. 13, no. 9, pp. 2979–2990.

    Article  CAS  Google Scholar 

  29. Ptácčk, P., Kubátová, D., Havlica, J., et al., Thermochim. Acta, 2010, vol. 501, nos. 1–2, pp. 24–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Kazakov.

Additional information

Original Russian Text © M.O. Kazakov, P.P. Dik, O.V. Klimov, S.V. Cherepanova, Yu.A. Chesalov, A.S. Noskov, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 2, pp. 247-255.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, M.O., Dik, P.P., Klimov, O.V. et al. Influence of the conditions of hydrogenation treatment of black oil on the yield and properties of the products obtained. Russ J Appl Chem 89, 254–262 (2016). https://doi.org/10.1134/S1070427216020154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216020154

Keywords

Navigation