Skip to main content
Log in

Effect of sodium dodecyl benzene sulfonate to the displacement performance of hyperbranched polymer

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Experimental studies were conducted to realize displacement performance effect of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on hyperbranched poly(AM/AA/AMPS/GA), which was successfully synthesized via free radical polymerization using modified dendritic functional monomer (GA), acrylamide (AM), acrylate (AA), and 2-acrylamido-2-methyl propane sulfonic acid (AMPS). Compared with individual polymer, SP (surfactant polymer) binary systems showed lower apparent viscosity, interfacial tension, and hydrodynamic radius as the result of the electrostatic repulsion between the tail end of hydrophilic polymer branched chain and the head of the surfactant. It was found from abundant static adsorption and dynamic retention tests that the values of static adsorption and dynamics retention of SDBS which is mixed with hyperbranched polymer decrease due to the competitive interaction. However, unlike this phenomenon, SDBS would heighten the dynamic retention value of poly(AM/AA/AMPS/GA), resulting in addition of residual resistance factor. Oil displacement experiment indicated that SP solutions have greater capability of enhance oil recovery than individual polymer under same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheng, J.J., Leonhard, B., and Azri, N., J. Can. Petrol. Technol., 2015, vol. 54, pp. 116–126.

    Article  CAS  Google Scholar 

  2. Liu, X.J., Jiang, W.C., Gou, S.H., Ye, Z.B., Feng, M.M., Lai, N.J., and Liang, L., Carbohydr. Polym., 2013, vol. 96, pp. 47–56.

    Article  CAS  Google Scholar 

  3. Lai, N.J., Dong, W., Ye, Z.B., Dong, J., Qin, X.P., Chen, W.L., and Chen, K., J. Appl. Polym. Sci., 2013, vol. 129, pp. 1888–1896.

    Article  CAS  Google Scholar 

  4. Xin, H.P., Ao, D., Wang, X.J., Zhu, Y.J., Zhang, J., and Tan, Y.B., Colloid Polym. Sci., 2015, vol. 293, pp. 1307–1316.

    Article  CAS  Google Scholar 

  5. Zhao, Y.Z., Zhou, J.Z., Xu, X.H., Liu, W.B., Zhang, J.Y., Fan, M.H., and Wang, J.B., Colloid Polym. Sci., 2008, vol. 287, pp. 237–241.

    Article  Google Scholar 

  6. Ye, Z.B., Gou, G.J., Gou, S.H., Jiang, W.C., and Liu, T.Y., J. Appl. Polym. Sci., 2013, vol. 128, pp. 2003–2011.

    CAS  Google Scholar 

  7. Chang, S.H. and Chung, I.J., Macromolecules, 1991, vol. 24, pp. 567–571.

    Article  CAS  Google Scholar 

  8. Xue, L., Agarwal, U.S., and Lemstra, P.J., Macromolecules, 2005, vol. 38, pp. 8825–8832.

    Article  CAS  Google Scholar 

  9. Zhong, C.R., Meng, X.H., and Deng, J., J. Appl. Polym. Sci. 2011, vol. 120, pp. 666–675.

    Article  CAS  Google Scholar 

  10. Maiti, P.K., Agin, T.C., Wang, G.F., and Goddard, W.A., Macromolecules, 2004, vol. 37, pp. 6236–6254.

    Article  CAS  Google Scholar 

  11. Mario, G., J. Am. Chem. Soc., 2009, vol. 131, p. 7477.

    Google Scholar 

  12. Wever, D.A.Z., Picchioni, F., and Broekhuis, A.A., Eur. Polym. J., 2013, vol. 49, pp. 3289–3301.

    Article  CAS  Google Scholar 

  13. Shi, L.T., Li, C., Zhu, S.S., Xu, J., Sun, B.Z., and Ye, Z.B., J. Chem., 2013, pp. 1–5.

    Google Scholar 

  14. Brigitte, I.V. and Albena, L., Chem. Rev., 2009, vol. 109, pp. 5924–5973.

    Article  Google Scholar 

  15. Pu, W.F., Liu, R., Wang, K.Y., Li, K.X., Yan, Z.P., Li, B., and Zhao, L., Ind. Eng. Chem. Res., 2015, vol. 54, pp. 798–807.

    Article  CAS  Google Scholar 

  16. Tranthan, J.C., J. Pet. Technol., 1983, vol. 35, pp. 872–880.

    Article  Google Scholar 

  17. Widmyer, R.H., Williams, D.B., and Ware, J.W., J. Pet. Technol., 1988, vol. 40, pp. 1217–1226.

    Article  CAS  Google Scholar 

  18. Li, B.L. and Cheng, J.C., Oil Gas Field Surf. Eng., 2004, vol. 23, p. 16.

    CAS  Google Scholar 

  19. Rai, K., Johns, R.T., Delshad, M., Lake, L.W., and Goudarzi, A., J. Pet. Sci. Eng., 2013, vol. 112, pp. 341–350.

    Article  CAS  Google Scholar 

  20. Lv, X., Zhang, J., and Jiang. W., J. Southwest Pet. Univ. Sci. Technol. Ed., 2008, vol. 30, pp. 127–130.

    CAS  Google Scholar 

  21. Nambam, J.S. and Philip, J., J. Colloid Int. Sci., 2012, vol. 366, pp. 88–95.

    Article  CAS  Google Scholar 

  22. Zhou, W., Dong, M., Guo, Y., Xiao, H., J. Can. Petrol. Technol., 2004, vol. 43, pp. 13–16.

    CAS  Google Scholar 

  23. Yang, H.B., Kang, W.L., Yu, Y., Lu, Y., Li, Z., Wang, M.Y., and Liu, T.J., J. Appl. Polym. Sci., 2015, DOI: 10.1002/app.42278.

    Google Scholar 

  24. Szymczyk, K., Gonzalez, M.L., Bruque, J.M., and Janczuk, B., J. Colloid Interface Sci., 2014, vol. 417, pp. 180–187.

    Article  CAS  Google Scholar 

  25. Lai, N.J., Zhang, X., Ye, Z.B., Hou, J.Z., Zhang, Y., and Qi, X.F., Chinese Patent 103320112, Sept. 25, 2013.

    Google Scholar 

  26. Dai, C.L., Zhao, G., You, Q., and Zhao, M.W., J. Appl. Polym. Sci., 2014, DOI: 10.1002/app.39462.

    Google Scholar 

  27. Chen, T.L. and Pu, W.F., Evaluation Methods of Polymer Application, Beijing: Petroleum Industry Press, 1996, pp. 104–105, 113–115.

    Google Scholar 

  28. Lai, N.J., Qin, X.P., Ye, Z.B., Li, C.X., Chen, K., and Zhang, Y., J. Pet. Sci. Eng., 2013, vol. 424, pp. 67–74.

    Google Scholar 

  29. Lai, N.J., Zhang, X., Ye, Z.B., Li, X., Li, Z.H., Wen, Y.P., and Zhang, Y., J. Appl. Polym. Sci., 2013, vol. 131, p. 39984.

    Google Scholar 

  30. Zhen, X.N., Ye, Z.B., Ye, Z.R., Guo, Y.J., and Liu, J.X., Xin Jiang Pet. Geol., 2009, vol. 30, pp. 637–640.

    Google Scholar 

  31. Reid, B.G., Bai, B.J., and Liu, Y., Paper SPE 90612 presented at the 2004 Annual Technical Conference and Exhibition, Houston, Texas, Sep. 26–29, 2004.

    Google Scholar 

  32. Staples, E., Tucker, I., Penfold, J., Warren, N., Thomas, R.K., and Taylor, D.J.F., Langmuir, 2002, vol. 18, pp. 5147–5153.

    Article  CAS  Google Scholar 

  33. Li, Y., Bloor, D. M., and Jones, E.W., Langmuir, 1996, vol. 12, pp. 4476–4478.

    Article  CAS  Google Scholar 

  34. Fang, M., Cheng, Y.Y., Zhang, J.H., Wu, Q.L., Hu, J.J., Zhao, L., and Xu, T.W., J. Phys. Chem. B, 2010, vol. 114, pp. 6048–6055.

    Article  CAS  Google Scholar 

  35. Austad, T., Fjelde, I., and Veggeland, K., J. Pet. Sci. Eng., 1994, vol. 12, pp. 1–8.

    Article  CAS  Google Scholar 

  36. Hu, J.B., Li, X.J., and Han, L.C., Oilfield Chem., 1991, vol. 8, pp. 320–324.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanjun Lai.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, N., Zhang, Y., Wu, T. et al. Effect of sodium dodecyl benzene sulfonate to the displacement performance of hyperbranched polymer. Russ J Appl Chem 89, 70–79 (2016). https://doi.org/10.1134/S10704272160010110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10704272160010110

Keywords

Navigation