Skip to main content
Log in

Preparation of nanostructured hydrated antimony oxide using a sol-gel process. Characterization and applications for sorption of La3+ and Sm3+ from aqueous solutions

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The study focused mainly on the synthesis of nanosized hydrated antimony oxide as an ion exchange material via sol-gel process using water as a reagent to control the pH and to obtain a pure and dense hydrated antimony oxide. The obtained antimony oxide was characterized using X-ray diffractometer, scanning electron microscope, TG-DTA, and fourier transform infrared spectroscopy. The result showed the formation of stibiconite with a cubic crystal structure in nanometric range (9.54 nm). FTIR study confirmed the formation of antimony oxide with characteristic bands at about 766 and 552 cm–1 attributed to Sb–O streatching modes of Sb–O–Sb and Sb–OH, respectively. The synthesized hydrated antimony oxide demonstrated monofunctional ion-exchange characteristic and reasonably good chemical stability in acidic and basic media. The synthesized ion exchanger was then used for the removal of lanthanum(III) and samarium(III) from aqueous solutions. As can be seen from distribution studies the distribution coefficient K d increased with increasing the reaction temperatures of the solution. Adsorption experiments were carried out using both batch and column systems. The Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) equilibrium models were used and a value q max was 41.10 and 48.42 mg g–1 for La(III) and Sm(III), respectively. Thermodynamic parameters, ΔH°, ΔG°, and ΔS° were calculated and indicated an endothermic and spontaneous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong, C.H., Meng, Y., Yao, C.P., and Shen, C., J. Rare Earths., 2009, vol. 27, p.923.

    Article  Google Scholar 

  2. Morais, C.A. and Ciminelli, V.S.T., Hydrometallurgy, 2004, vol. 73, p.237.

    Article  CAS  Google Scholar 

  3. Maestro, P. and Huguenin, D., J. Alloys Compd., 1995, vol. 225, p.520.

    Article  CAS  Google Scholar 

  4. Golunski, S.E. and Jackson, D., Appl. Catal., 1989, vol. 48, pp. 123–135.

    Article  CAS  Google Scholar 

  5. Golunski, S.E., Nevell, T.G., and Pope, M.I., Thermochim. Acta, 1981, vol. 51, pp. 153–168.

    Article  CAS  Google Scholar 

  6. Cody, C.A., DiCarlo, L., and Darlington, R.K., Inorg. Chem., 1979, vol. 18, pp. 1572–1576.

    Article  CAS  Google Scholar 

  7. Samasonov, G.V., The Oxide Handbook, IFI/Plenum, 1973, pp. 320–441.

    Book  Google Scholar 

  8. Ye, C., Meng, G., Zhang, L., Wang, G., and Wang, Y., Chemical Physics Letters, 2002, vol. 363, pp. 34–38.

    Article  CAS  Google Scholar 

  9. Umar, A., Rahman, M.M., and Hahn, Y.B., Electrochem. Comm., 2009, vol. 11, pp. 1353–1357.

    Article  CAS  Google Scholar 

  10. Rahman, M.M., Jamal, A., Khan, S.B., and Faisal, M., J. Nanopart. Res., 2011, vol. 13, pp. 3789–3799.

    Article  CAS  Google Scholar 

  11. Siegel, R.W., Nanostructured Materials, 1994, vol. 4, pp. 121–138.

    Article  Google Scholar 

  12. Umar, A., Rahman, M.M., Al-Hajry, A., and Hahn, Y.B., Talanta, 2009, vol. 78, pp.284–289.

    Article  CAS  Google Scholar 

  13. Liu, P., Zhang, Y.H., Zhang, M.W., Zhang, W.H., and Qian, Y.T., Mater. Sci. & Eng., 1997, vol. 49, pp. 42–45.

    Article  Google Scholar 

  14. Granqvist, C.G. and Buhrmann, R.A., J. Appl. Phys., 1976, vol. 47, pp. 2200–2219.

    Article  CAS  Google Scholar 

  15. El-Naggar, I.M. and Abou-Mesalam, M.M., J. Hazard. Mater., 2007, vol. 149, pp. 686–692.

    Article  CAS  Google Scholar 

  16. Nilchi, A., Maalek, B., Khanchi, A., Maragheh, M.Gh., and Bagheri, A., J. Radiation Physics and Chemistry, 2006, vol. 75, pp. 301–308.

    Article  CAS  Google Scholar 

  17. Ergene, A., Ada, K., Tan, S., and Katircioglu, H., Desalination, 2009, vol. 249, pp. 1308–1314.

    Article  CAS  Google Scholar 

  18. Langmuir, I., J. Am. Chem. Soc., 1916, vol. 38, pp. 2221–2295.

    Article  CAS  Google Scholar 

  19. Webber, T.W. and Chakkravorti, R.K., AlChE J., 1974, vol. 20, pp. 228–238.

    Article  Google Scholar 

  20. Akar, S.T., Özcan, A.S., Akar, T., Özcan, A., and Kaynak, Z., Desalination, 2009, vol. 249, pp. 757–761.

    Article  CAS  Google Scholar 

  21. Freundlich, H.M.F., J. Phys. Chem., 1906, vol. 57A, pp. 385–470.

    CAS  Google Scholar 

  22. Dubinin, M.M., and Radushkevich, L.V., Proc. Acad. Sci. USSR Phys. Chem. Sect., 1947, vol. 55, pp. 331–337.

    Google Scholar 

  23. Dubinin, M.M., Chem. Rev., 1960, vol. 60, pp. 235–266.

    Article  CAS  Google Scholar 

  24. Zhu, C.S., Wang, L.P., and Chen, W., J. Hazard. Mater., 2009, vol. 168, pp. 739–746.

    Article  CAS  Google Scholar 

  25. Li, Q., Chai, L., Yang, Z., and Wang, Q., Appl. Surf. Sci., 2009, vol. 255, pp. 4298–4303.

    Article  CAS  Google Scholar 

  26. Taylor, X-ray Metallography, John Wiley, New York, 1961, pp. 678–686.

    Google Scholar 

  27. Die’guez, A., Romano-Rodriguez, A., Morante, J.R., Weimar, U., Schweizer-Berberich, M., and Go..pel, W., Sensors, Sens. Actuators, 1996, vol. 31, pp. 1–8.

    Article  Google Scholar 

  28. Abello, L., Bochu, B., Gaskov, A., Koudryavtseva, S., Lucazeau, G., and Roumyantseva, M., J. Solid State Chem., 1998, vol. 135, p.78.

    Article  CAS  Google Scholar 

  29. Pusawale, S.N., Deshmukh, P.R., and Lokhande, C.D., Bull. Mater. Sci., 2011, vol. 34, pp. 1179–1183.

    Article  CAS  Google Scholar 

  30. Wang, Y. and Herron, N., J. Phys. Chem., 1991, vol. 95, p.525.

    Article  CAS  Google Scholar 

  31. Karuppuchamy, S. and Jeong, J.M., J. Oleo Sci., 2006, vol. 55, p.263.

    Article  CAS  Google Scholar 

  32. El-Naggar, I.M., Hebash, K.A., Sheneshen, E.S., and Abdel-Galil, E.A., Inorganic Chemistry An Indian Journal, 2014, vol. 9, pp. 1–14.

    CAS  Google Scholar 

  33. Iqbal, M.J. and Am, N., J. Hazard. Mater., 2007, vol. B139, pp. 57–66.

    Article  Google Scholar 

  34. Ponnusami, V., Gunasekar, V., and Srivastava, S.N., J. Hazard. Mater., 2009, vol. 169, pp. 119–127.

    Article  CAS  Google Scholar 

  35. Dahlan, I., Hassan, S.R., and Hakim, M.L., Sustain Env. Res., 2013, vol. 23, pp. 41–48.

    CAS  Google Scholar 

  36. Awwad, N.S., Gad, H.M.H., Ahmed, M.I., and Aly, H.F., Colloid and surface: Biointerfaces, 2010, vol. 81, pp. 593–599.

    Article  CAS  Google Scholar 

  37. Chowdhury, Sh., Mishra, R., Saha, P., and Kushwaha, P., Desalination, 2011, vol. 265, pp. 159–168.

    Article  CAS  Google Scholar 

  38. El-Naggar, I.M., Zakaria, E.S., El-Kenany, W.M., and El-Shahat, M.F., Radiochem., 2014, vol. 56, pp. 86–91.

    Article  CAS  Google Scholar 

  39. El-Naggar, I.M., Mowafy, E.A., Abdel-Galil, E.A., and El-Shahat, M.F., Global J. Physic. Chemistry, 2010, vol. 1, pp. 91–106.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Galil, E.A., El-kenany, W.M. & Hussin, L.M.S. Preparation of nanostructured hydrated antimony oxide using a sol-gel process. Characterization and applications for sorption of La3+ and Sm3+ from aqueous solutions. Russ J Appl Chem 88, 1351–1360 (2015). https://doi.org/10.1134/S1070427215080200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215080200

Keywords

Navigation