Skip to main content
Log in

Synthesis and characterization of modified novolac phenolic resin nanocomposites as metal coatings

  • Various Technological Solutions
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Novolac phenol formaldehyde NPF resin/organobentonite clay nanocomposites were prepared and modified with epoxy and/or urethane resin via solution technique. The prepared samples at organoclay content 2 phr were characterized by transmission electron microscope TEM, X-ray diffraction (XRD), and Fourier transform infrared measurements (FTIR) in comparison with unmodified NPF resin. TEM showed that nanocomposites achieved good clay dispersion. X-ray diffraction analysis indicated that exfoliated structures were obtained. Furthermore, the FTIR investigation confirmed the incorporation of epoxy and/or toluene diisocynate in the modified structure. The influence of the nanoclay content (i.e., 0.5, 1.0, 1.5, 2.0, and 2.5) relative to the micrometer clay (i.e., 2, 4, 6, 8, 10, and 20) on the NPF resin was analyzed through mechanical properties (viz., adhesive, scratch hardness, impact resistance and elongation at break), thermal stability (TGA) and electrical volume resistivity. Epoxy modified NPF nanocomposites with 2 phr organoclay gave the optimum adhesion and scratch hardness values, thermal stability and electrical insulation resistance as compared with epoxy/urethane, urethane modified NPF, and unfilled NPF samples. The samples could be successfully evaluated as metal coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joseph, J. Tseng, C.Y., Pan, C.J., et al., Polym., 2010, vol. 51, pp. 5663–566.

    Article  CAS  Google Scholar 

  2. Zou, H., Wu, S., and Shen, J., Chem Rev., 2008, vol. 108, pp. 3893–3957.

    Article  CAS  Google Scholar 

  3. Run, M.T., Wu, S. Z., Zhang, D.Y., and Wu, G., Mater. Chem. & Phys., 2007, vol. 105, pp. 341–347.

    Article  CAS  Google Scholar 

  4. Hasegawa, N., Okamoto, H., Kawasumi, M., and Usuki, A., J. Appl. Polym. Sci., 1999, vol. 74, no. 14, pp. 3359–3364.

    Article  CAS  Google Scholar 

  5. Sakar, M., Dana, K., Ghatak, S., and Banerjee, A., Bull. Mater. Sci., 2008, vol. 31, no. 1, pp. 23–28.

    Article  Google Scholar 

  6. Chang, J.H., Seo, B.S., and Hwang, D.H., Polym., 2002, vol. 43, pp. 2969–2974.

    Article  CAS  Google Scholar 

  7. Luyi Suna, G.L., Warrena, J.Y., O’Reillya, W.N. et al., Carbon, 2008, vol. 46, pp. 320–328.

    Article  Google Scholar 

  8. Motawie, A.M,, Madani, M., Esmail, E.A., et.al., Egypt. J. Petroleum, 2014, vol. 33, pp. 379–387.

    Article  Google Scholar 

  9. Cevdet Kaynak, C., and Cem Tasan, Europ. Polymer J., 2006, vol. 42, pp. 1908–1921

    Article  Google Scholar 

  10. Zhang, X., Shen, L., Xia, X., et.al., Mater. Chem. & Phys., 2008, vol. 111, pp. 368–374.

    Article  CAS  Google Scholar 

  11. Abdalla, M.O., Ludwick, A., and Mitchell, T., Polym., 2003 vol. 44, pp. 7353–7359.

    Article  CAS  Google Scholar 

  12. Liu, L., and Ye, Z., Polymer Degradation and Stability, 2009, vol. 94, pp. 1972–1978.

    Article  CAS  Google Scholar 

  13. Ye, C., Gong, Q.M,., Lu, F.P., and Liang, J., Separation and Purification Technology, 2008 vol. 61, pp. 9–14.

    Article  CAS  Google Scholar 

  14. Kaynak, C., and Tasan, C.C.. European Polymer J., 2006, vol. 42, pp. 1901–1921.

    Article  Google Scholar 

  15. Tasan, C.C. and Kaynak, C., 2009, vol. 30, pp. 343–350.

  16. Sturiale, A., Va’zquez, A., and Cisilino, L.B., Int. J. Adhesion & Adhesives, 2007, vol. 27, pp. 156–164.

    Article  CAS  Google Scholar 

  17. Garciá-Lópeza, D., Gobernado-Mitrea, I., and Fernándezb, J.F., et al., Polym., 2005, vol. 46, pp. 2758–2765.

    Article  Google Scholar 

  18. Motawie, A.M. Badr, M.M., Amer, M.S., et al., Zing Polymer Chemistry Conference Mexico, 2–7 February 2009.

    Google Scholar 

  19. Bhatnagar, M.S., Abstracts of Book Chemistry and Technology of Polymers (Processing and Applications),” Schand & Company Ltd., 2004, pp. 244–249.

    Google Scholar 

  20. Motawie, A.M., Hassan, E.A., Manieh, A.A., et al., J. Appl. Polymer Sci., 1995, vol. 55, pp. 1725–1732.

    Article  CAS  Google Scholar 

  21. Motawie, A.M., Hassan, E.A., Manieh, A.A, et al., J. Chem. Tech. Biotechnol., 1995, vol. 62, p. 222.

    Article  CAS  Google Scholar 

  22. Motawie, A.M., Badr, M.M, Abo-El-Yazid, D.E., and El-Komy, D.A., Egyptian Patent no. 26250/2013. Treatment of Egyptian Bentonite to Modified Nano Egyptian.

  23. Kinloch, A.J., and Taylor, A.C., J. Mater. Sci., 2006, vol. 41, pp. 3271–3297.

    Article  CAS  Google Scholar 

  24. Guy, R., High-Performance Polymers, Chemistry and Applications, Paris: Institut Francai du Petrole Pub., 1997, pp. 95–97.

    Google Scholar 

  25. Dorel, F. and Alla, B., Synthetic Polymers: Technology, Properties, Applications, Chapman & Hall, 1996, pp. 331–335, 338–339, 344–345.

    Google Scholar 

  26. Jiawen, X., Yunhang, L., Xiaohui, Y., and Xinling, W., Polymer Degradation and Stability, 2004, vol. 86, pp. 549–555.

    Article  Google Scholar 

  27. Florêncio, G., Ramos, F., Tomás, J.A., et al., Polymer Degradation and Stability, 2005, vol. 89, pp. 383–392.

    Article  Google Scholar 

  28. Byung, K.K., and Jang, W.S., Europ. Polymer J., 2003, vol. 39, pp. 85–91.

    Article  Google Scholar 

  29. Ding-Ru, Y., Shiao-Wei, K., Huei-Kuan, F., and Feng-Chih, C., Polym., 2005, vol. 46, pp. 741–748.

    Article  Google Scholar 

  30. Velmurugan, R., and Mohan, T.P., J. Mater Sci., 2004, vol. 39, pp. 7333–7339.

    Article  CAS  Google Scholar 

  31. Shu-Yong, Z., Yi-Fu, D., Shan-Jun. L., et al., Corrosion Sci., 2002, vol. 44, no. 4, pp. 861–869.

    Article  Google Scholar 

  32. Chinnakkannu, K.C., Muthukaruppan, A., and Periyannan, G., Acta Materialia, 2009, vol. 57, pp. 782–794.

    Article  Google Scholar 

  33. Davood, Z., Ali, A.S., Farhad, S. and Seid, M.K., J. Coat. Technol. Res., 2008, vol. 5, no. 2, pp. 241–249.

    Article  Google Scholar 

  34. Tager, A., Physical Chemistry of Polymers, Moscow: Mir, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Sadak.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motawie, A.M., Mohamed, M.Z., Ahmed, S.M. et al. Synthesis and characterization of modified novolac phenolic resin nanocomposites as metal coatings. Russ J Appl Chem 88, 970–976 (2015). https://doi.org/10.1134/S1070427215060129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215060129

Keywords

Navigation