Skip to main content
Log in

Photocatalytic degradation of diclofenac sodium in aqueous solution using N, S, and C-doped ZnO

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this investigation photocatalytic degradation of diclofenac sodium as drug pollutants was studied. N, S, and C-doped ZnO particles were supported from thiourea and zinc sulfate via a precipitation method and characterized by X-ray diffraction (XRD) together with X-ray photoelectron spectroscopy (XPS). The degradation was studied under different conditions including concentrations of catalyst and drug, initial pH value, and presence of electron acceptor. The results showed that photocatalytic degradation of drug was strongly influenced by these parameters. Therefore, the best conditions for the photocatalytic degradation of diclofenac sodium were obtained. The optimum concentrations of N, S, C-doped ZnO was found to be 0.44 g L–1. The photodegradation efficiency of the drug decreased with an increase in its initial concentration of diclofenac sodium. In acidic solutions, photocatalytic degradation efficiency was higher than in alkaline solutions. The photodegradation efficiency of diclofenac sodium was accelerated by addition of a small amount of K2S2O8 and H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stan, H.J., Heberer, T., and Linkerhägner, M., Vom Wasser, 1994, vol. 83, pp. 57–68.

    CAS  Google Scholar 

  2. Wiegel, S., Aulinger, A., Brockmeyer, R., Harms, H., Loffler, J., Reincke, H., Schmidt, R., Stachel, B., Tumpling, W.V., and Wanke, A., Chemosphere, 2004, vol. 572, pp. 107–126.

    Article  Google Scholar 

  3. Richardson, M.L. and Bowron, J.M., J. Pharm. Pharmacol., 1985, vol. 37, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  4. Henglein, A., Sonochem., 1995, vol. 2, pp. S115–S121.

    Article  CAS  Google Scholar 

  5. Gros, M., Petrovi, M., Ginebreda, A., and Barcelό, D., Env. Int., 2010, vol. 36, pp. 15–2.

    Article  CAS  Google Scholar 

  6. Carp, O., Huisman, C.L., and Reller, A., Prog. Solid Sate Chem., 2004, vol. 32, nos. 1, 2, pp. 33–177.

    Article  CAS  Google Scholar 

  7. Huang, C.M., Chen, L.C., Cheng, K.W., and Pan, G.T., J. Mol. Catal. A: Chem., 2007, vol. 261, pp. 218–224.

    Article  CAS  Google Scholar 

  8. Wang, X. Yu, J.C., Chen, Y., Wu, L., and Fu, X., Environ. Sci. Technol., 2004, vol. 408, no. 30, pp. 10617–10620.

    Google Scholar 

  9. Yu, J.C., Yu, J., Ho, W., and Jiang, Z., Chem. Mater., 2002, vol. 14, pp. 3808.

    Article  CAS  Google Scholar 

  10. Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., and Maier, W.F., Appl. Catal., 2015, vol. B32, pp. 215–227.

    Google Scholar 

  11. Nagaveni, N., Hegde, M.S., Ravishankar, N., Subbanna, G.N., and Madras, G., Langmuir, 2004, vol. 20, no. 7, pp. 2900–2097.

    Article  CAS  Google Scholar 

  12. Khan, S.U.M., Al-Shahry, M., and Ingler, W.B. Jr., Science, 2002, vol. 297, pp. 2243–2245.

    Article  CAS  Google Scholar 

  13. Ohno, T., Akiyoshi, M., Umebaysshi, T., Asai, K., Mitsui, T., and Matsumura, M., Appl. Catal. A: Gen., 2004, vol. 265, no. 1, pp. 115–121.

    Article  CAS  Google Scholar 

  14. Ohno, T., Tsubota, T., Nakamura, Y., and Soyama, K., Appl. Catal. A: Gen., 2005, vol. 288, no. 1, 2, pp. 74–79.

    Article  CAS  Google Scholar 

  15. Kanade, K.G., Kale, B.B., Baeg, J.-O., Lee, S.M., Lee, C.W., Moon, S.-J., and Chang, H., Mater. Chem. Phys., 2007, vol. 102, no. 1, pp. 98–104.

    Article  CAS  Google Scholar 

  16. Akyol, A., Yatmaz, H.C., and Bayramoglu, M., Appl. Catal. B: Environ., 2004, vol. 54, no. 1, pp. 19–24.

    Article  CAS  Google Scholar 

  17. Daneshvar, N., Salari, D., and Khataee, A.R., J. Photochem. Photobiol. A: Chem., 2004, vol. 162, no. 2, pp. 317–324.

    Article  CAS  Google Scholar 

  18. Yeber, M.C., Rodriguez, J., Freer, J., Baeza, J., Duran, N., and Mansilla, H.D., Chemosphere 1999, vol. 39, no. 10, pp. 1679–1688.

    Article  CAS  Google Scholar 

  19. Giahi, M., Taghavi, H., and Habibi, S., Russ. J. Phys. Chem., A, 2012, vol. 86, no. 13, pp. 81–85.

    Article  Google Scholar 

  20. Giahi, M., Badalpoor, N., Habibi, S., et al., Bull. Korean Chem. Soc., 2013, vol. 34, no. 7, pp. 2176–2182.

    Article  CAS  Google Scholar 

  21. Akhgar, M. and Giahi, M., Russ. J. Appl. Chem., 2015, vol. 88, no. 6, pp. 985–989.

    Article  CAS  Google Scholar 

  22. Khodja, A.A., Sehili, T., Ihichowski, P.J.F., and Boule, P., J. Photochem. Photobiol. A, 2001, vol. 141, no. 2, pp. 231–239.

    Article  CAS  Google Scholar 

  23. Chen, L.C., Tu, Y.J., Wang, Y.Sh., Kan, R.S., and Huang, Ch.M., J. Photochem. Photobiol. A: Chemistry, 2008, vol. 199, nos. 1, 2, pp. 170–178.

    Article  CAS  Google Scholar 

  24. Hermann, J.M., Catal Today, 1999, vol. 53, no. 1, pp. 115–129.

    Article  Google Scholar 

  25. Rohe, B., Veeman, W.S., and Tausch, M., Nano Technol., 2006, vol. 17, pp. 277–282.

    CAS  Google Scholar 

  26. Akpan, U.G. and Hameed, B.H., J. Hazard Mater., 2009, vol. 170, nos. 2–3 pp. 520–529.

    Article  CAS  Google Scholar 

  27. Muneera, M. and Bahnemannb, D., Appl. Catal. B: Environ., 2002, vol. 36, no. 2, pp. 95–111.

    Article  Google Scholar 

  28. San, N., Hatipoglu Kocturk, A., and Cinar, G.Z., J. Photochem. Photobiol. A: Chem., 2001, vol. 139, nos. 2, 3, pp. 225–232.

    Article  CAS  Google Scholar 

  29. Muruganandham, M. and Swaminathan, M., Dyes Pigments, 2006, vol. 68, nos. 2, 3, pp. 133–142.

    Article  CAS  Google Scholar 

  30. Chen, C.C., J. Molecular Catalysis, A: Chem., 2007, vol. 264, pp. 82–92.

    Article  CAS  Google Scholar 

  31. Anandal, R.S., Gowda, N.M.M., and Raksha, K.R., Adv. Nanoparticl., 2014, vol. 3, pp. 133–147.

    Article  Google Scholar 

  32. Xu, C., Cao, Lixin., Su, Ge., Liu, W., Liu, H., Yu, Y., and Qu, X., 2010, vol. 186, nos. 1–3 pp. 807–813.

  33. Nibret, A., Yadav, O.P., Diaz, I., and Taddesse, A.M., Bull. Chem. Soc. Ethiop., 2015, vol. 29, no. 2, pp. 247–258.

    Article  CAS  Google Scholar 

  34. Lavand, A.B. and Malghe, Y.S., J. Asian Ceramic Soc., 2015, vol. 3, pp. 305–310.

    Article  Google Scholar 

  35. Chen, L.C., Tu, Y.J., Wang, Y.S., Kan, R.S., and Huang, C.M, J. Photochem. & Photobiol. A: Chem., 2008, vol. 199, pp. 170–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Giahi.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giahi, M. Photocatalytic degradation of diclofenac sodium in aqueous solution using N, S, and C-doped ZnO. Russ J Appl Chem 88, 2044–2049 (2015). https://doi.org/10.1134/S10704272150120228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10704272150120228

Keywords

Navigation