Skip to main content
Log in

Ion-pair-based surfactant-assisted dispersive liquid–liquid microextraction for the determination of cadmium in water samples: Optimization using response surface methodology

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A sensitive, simple, and rapid method is developed for ion-pair-based surfactant-assisted dispersive liquid–liquid microextraction (IPSA-DLLME) and flame atomic absorption spectrometric determination of cadmium in water samples. In this procedure, trace amounts of Cd2+ were converted to CdI 2–4 , and after addition of a tetrabutylammonium bromide (TBAB) solution as cationic surfactant the analyte was transformed to the ion-pair state. This cadmium species was extracted by fast injection of a solution containing 200 μL of chloroform and 800 μL of methanol as extraction and disperser solvents, respectively. The pH of the sample solution, concentration of iodide, TBAB amount, and the extractant volume were optimized using a 27-run Box–Behnken design with a triplicate central point. Under the optimized conditions, the calibration curve was linear in the range 1–200 μg L–1 (R 2 = 0.9959); with the detection limit (signal/noise = 3) of 0.28 μg L–1. The relative standard deviations (RSD) for eight runs (Cd2+ = 10 μg L–1) and enrichment factor were found to be 3.04 % and 50, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khairya, M., El-Saftya, S.A., and Shenashen, M.A., Trends Anal. Chem., 2014, vol. 62, pp. 56–68.

    Article  Google Scholar 

  2. Taylor, M.P., Mould, S.A., Kristensen, L.J., and Rouillon, M., Environ. Res., 2014, vol. 135, pp. 296–303.

    Article  CAS  Google Scholar 

  3. Talio, M.C., Luconi, M.O., Masi, A.M., and Fernandez, L.P., J. Hazard. Mater., 2009, vol. 170, no. 1, pp. 272–277.

    Article  CAS  Google Scholar 

  4. Adinarayana Reddy, S., Janardhan Reddy, K., Lakshminaraya, S., Lalitha Priya, D., Subba Rao, Y., and Varada Reddy, A., J. Hazard. Mater., 2008, vol. 152, no. 3, pp. 903–909.

    Article  Google Scholar 

  5. El-Shahawi, M.S., Bashammakh, A.S., Orief, M.I., Alsibaai, A.A., and Al-Harbi, E.A., J. Ind. Eng. Chem., 2014, vol. 20, no. 1, pp. 308–314.

    Article  CAS  Google Scholar 

  6. Li, P.C. and Jiang, S.J., Anal. Chim. Acta, 2003, vol. 495, pp. 143–150.

    Article  CAS  Google Scholar 

  7. Konečna, M., Komárek, J., and Trnková, L., Spectrochim. Acta, Part B: At. Spectrosc., 2008, vol. 63, pp. 700–703.

    Article  Google Scholar 

  8. Junior, M.M.S., Silva, L.O.B., Leao, D.J., and Ferreira, S.L.C., Food Chem., 2014, vol. 160, pp. 209–213.

    Article  CAS  Google Scholar 

  9. Mirabi, A., Dalirandeh, Z., and Rad, A.S., J. Magn. Magn. Mater., 2015, vol. 381, pp. 138–144.

    Article  CAS  Google Scholar 

  10. Duran, C., Gundogdu, A., Numan Bulut, V., Soylak, M., Elci, L., Basri Senturk, H., and Tufekci, M., J. Hazard. Mater., 2007, vol. 146, pp. 347–355.

    Article  CAS  Google Scholar 

  11. Mendez, J.A., Garcia, J.B., Crecente, R.M.P., Martin, S.G., and Latorre, C.H., Talanta, 2011, vol. 85, pp. 2361–2367.

    Article  CAS  Google Scholar 

  12. Anthemidis, A.N., Zachariadis, G.A., Farastelis, C.G., and Stratis, J.A., Talanta, 2004, vol. 62, no. 3, pp. 437–443.

    Article  CAS  Google Scholar 

  13. Nabid, M.R., Sedghi, R., Bagheri, A., Behbahani, M., Taghizadeh, M., Oskooie, H.A., and Heravi, M.M., J. Hazard. Mater., 2012, vols. 203–204, pp. 93–10.

    Article  Google Scholar 

  14. Rezende, H.C., Nascentes, C.C., and Coelho, N.N.M., Microchem. J., 2011, vol. 97, no. 2, pp. 118–121.

    Article  CAS  Google Scholar 

  15. Shamsipur, M., Zahedi, M.M., Filippo, G.D., and Lippolis, V., Talanta, 2011, vol. 85, pp. 687–693.

    Article  CAS  Google Scholar 

  16. Li, L., Hu, B., Xia, L., and Jiang, Z., Talanta, 2006, vol. 70, pp. 468–473.

    Article  CAS  Google Scholar 

  17. Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F., and Berijani, S., J. Chromatogr. A, 2006, vol. 116, pp. 1–7.

    Article  Google Scholar 

  18. Rezaee, M., Yamini, Y., Khanchi, A., Faraji, M., and Saleh, A., J. Hazard. Mater., 2010, vol. 178, pp. 766–770.

    Article  CAS  Google Scholar 

  19. Mallah, M.H., Shemirani, F., Ghannadi Maragheh, M., and Jamali, M.R., J. Mol. Liq., 2010, vol. 151, pp. 122–124.

    Article  CAS  Google Scholar 

  20. Yousefi, S.R. and Shemirani, F., Anal. Chim. Acta, 2010, vol. 669, pp. 25–31.

    Article  CAS  Google Scholar 

  21. Xiaodong Wen, Qiuling Yang, Zhidong Yan, and Qingwen Deng, Microchem. J., 2011, vol. 97, no. 2, pp. 249–254.

    Article  CAS  Google Scholar 

  22. Zahedi, M.M., Rahimi-Nasrabadi, M., Pourmortazavi, S.M., Fallah-Koohbijari, G.R., Shamsi, J., and Pairavi, M., Microchim Acta, 2012, vol. 179, nos. 1–2 pp. 57–64.

    Article  CAS  Google Scholar 

  23. Mohammadzadeh, A., Ramezani, M., and Niazi, A., Desalination Water Treat., 2015. doi: 10.1080/19443994. 2015.1033469.

    Google Scholar 

  24. Sanchez Rojas, F., Bosch Ojeda, C., and Cano Pavon, J.M., Anal. Meth., 2011, vol. 3, pp. 1652–1655.

    Article  Google Scholar 

  25. Khan, S., Soylak, M., and Gul Kazi, T., Toxicol. Environ. Chem., 2013, vol. 95, pp. 1069–1079.

    Article  CAS  Google Scholar 

  26. Shamsipura, M., Ramezani, M., Miran Beigi, A.A., and Poursaberi, T., Indian J. Chem., Sect. A, 2012, vol. 51, pp. 825–829.

    Google Scholar 

  27. Ciftci, H., Desalination, 2010, vol. 263, pp. 18–22.

    Article  CAS  Google Scholar 

  28. Santos, W.N.L.D., Cavalcante, D.D., Ferreira, H.S., das Virgens, C.F., Borges, A.R., Silva, M.M., and Vale, M.G.R., Int. J. Environ. Anal. Chem., 2011, vol. 91, pp. 1447–1452.

    Article  Google Scholar 

  29. Afkhami, A., Madrakian, T., and Siampour, H., J. Hazard. Mater., 2006, vol. 138, pp. 269–272.

    Article  CAS  Google Scholar 

  30. Xiang, G., Wen, S., Wu, X., Jiang, X., He, L., and Liu, Y., Food Chem., 2012, vol. 132, pp. 532–536.

    Article  CAS  Google Scholar 

  31. Jing-Wen Zhang, Yu-Kun Wang, Xin Du, Xia Lei, Jing-Jun Ma, and Jing-Ci Li, J. Braz. Chem. Soc., 2011, vol. 3, pp. 446–453.

    Article  Google Scholar 

  32. Ezoddin, M., Taghizadeh, T., and Majidi, B., Environ. Technol., 2014, vol. 35, pp. 2401–2409.

    Article  CAS  Google Scholar 

  33. Prichard, E., MacKay, G.M., and Points, J., Trace Analysis: A Structured Approach to Obtaining Reliable Results, Cambridge: Royal Soc. Chem., 1996.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ramezani.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, M., Azarmehr, A.A. & Mohammadzadeh, A. Ion-pair-based surfactant-assisted dispersive liquid–liquid microextraction for the determination of cadmium in water samples: Optimization using response surface methodology. Russ J Appl Chem 88, 2021–2028 (2015). https://doi.org/10.1134/S10704272150120186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10704272150120186

Keywords

Navigation