Skip to main content
Log in

Synthesis of struvite (MgNH4PO4·6H2O) and its use for sorption of nickel ions

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The influence of the conditions of the struvite synthesis on its ability to form crystals with developed faces of different forms (hkl) and on the possibility of the subsequent transition to more stable forms was examined. The correlation between the ζ-potential of the struvite particle surface, struvite crystal size, and tendency to form agglomerates was demonstrated. The sorption rate in the system consisting of struvite, nickel ions, ammonium ions, and water can be increased by combining the internal diffusion and recrystallization of the solid interaction products. The possibility of enhancing the sorption performance by properly choosing the anionic composition of solutions of nickel salts for the sorption was revealed. The conditions for preparing struvite for its use as agent for improvement of contaminated soils to immobilize heavy metal ions were substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahman, M.M., Salleh, M.A., Rashid, U., et al., Arab. J. Chem., 2014, vol. 7, pp. 139–155.

    Article  CAS  Google Scholar 

  2. Rahman, M.M., Liu, Y.H., Kwag, J.H., and Ra, C.S., J. Hazard. Mater., 2011, vol. 186, pp. 2026–2030.

    Article  CAS  Google Scholar 

  3. Kim, D.K., Ryu, H.D., Kim, M.S., et al., J. Hazard. Mater., 2007, vol. 146, pp. 81–85.

    Article  CAS  Google Scholar 

  4. Wu, Y. and Zhon, S., Environ. Sci. Pollut., 2012, vol. 19, pp. 347–360.

    Article  Google Scholar 

  5. Doyle, J.D., Oldring, K., Churchley, J., et al., J. Environ. Eng.–ASCE, 2003, vol. 129, pp. 419–426.

    Article  CAS  Google Scholar 

  6. Bichler, K.H., Eipper, E., and Naber, K., J. Antimicrob. Agents, 2002, vol. 19, pp. 488–498.

    Article  CAS  Google Scholar 

  7. Xu, H., He, P., Gu, W., et al., J. Environ. Sci., 2012, vol. 24, no. 8, pp. 1553–1538.

    Article  Google Scholar 

  8. Stylionou, M.A., Kollia, D., and Haralambons, K.J., Desalination, 2007, vol. 215, nos. 1–3 pp. 73–81.

    Article  Google Scholar 

  9. Cao, X., Ma, L.Q., Rhne, D.R., and Appel, Ch.S., Environ. Pollut., 2004, vol. 131, pp. 435–444.

    Article  CAS  Google Scholar 

  10. Siluyanova, M.Yu., Leont’eva, G.V., and Vol’khin, V.V., Butlerovsk. Soobshch., 2012, vol. 31, no. 9, pp. 59–71.

    Google Scholar 

  11. Rouff, A.A., Environ. Sci. Technol., 2012, vol. 46, pp. 12493–12501.

    Article  CAS  Google Scholar 

  12. Rouff, A.A. and Juarez, K.M., Environ. Sci. Technol., 2014, vol. 48, pp. 6342–6349.

    Article  CAS  Google Scholar 

  13. Vol’khin, V.V., Siluyanova, M.Yu., Leont’eva, G.V., and Kazakov, D.A., Russ. J. Inorg. Chem., 2014, vol. 59, no. 10, pp. 1407–1414.

    Google Scholar 

  14. Hao, X.D., Wang, C.C., Lan, L., and Von Loosdrecht, M.C.M., Water Sci. Technol., 2008, vol. 58, pp. 1687–1692.

    Article  Google Scholar 

  15. Yetilmezsoy, K. and Zengin, Z.S., J. Hazard. Mater., 2009, vol. 166, pp. 260–269.

    Article  CAS  Google Scholar 

  16. Ye, Z., Sen, Y., Ye, X., et al., J. Environ. Sci., 2014, vol. 26, pp. 991–1000.

    Article  CAS  Google Scholar 

  17. Bouroponlos, N.Ch. and Koutsankas, P.G., J. Cryst. Growth, 2000, vol. 213, pp. 381–388.

    Article  Google Scholar 

  18. Abbona, F. and Boistelle, R., J. Cryst. Growth, 1979, vol. 46, pp. 339–354.

    Article  CAS  Google Scholar 

  19. Blachnik, R., Wiest, Th., Dülmer, A. and Reuter, H., Z. Kristallogr., 1997, vol. 212, no. 1, pp. 20–23.

    CAS  Google Scholar 

  20. Prywer, J., Torzewska, A., and Płociński, T., Urol. Res., 2012, vol. 40, pp. 699–707.

    Article  Google Scholar 

  21. Egorov-Tismenko, Yu.K., Kristallografi ya i kristallokhimiya (Crystallography and Crystal Chemistry), Moscow: KDU, 2005.

    Google Scholar 

  22. Hanhoun, M., Montastruc, L., Azzaro-Pantel, C., et al., Chem. Eng. J., 2011, vol. 167, pp. 50–58.

    Article  CAS  Google Scholar 

  23. Tai, C.Y., Chen, P.C., and Tsao, T.M., J. Cryst. Growth, 2006, vol. 290, pp. 576–584.

    Article  CAS  Google Scholar 

  24. Ali, M.I. and Schneider, P.A., Chem. Eng. Sci., 2008, vol. 63, pp. 3514–3525.

    Article  CAS  Google Scholar 

  25. Mehta, C.M. and Batstone, D.J., Water Res., 2013, vol. 47, no. 8, pp. 2890–2900.

    Article  CAS  Google Scholar 

  26. Abbona, F., Angela-Franchini, M., Bono, C.C., and Madsen, H.E.L., J. Cryst. Growth, 1994, vol. 143, nos. 3–4 pp. 256–260.

    Article  CAS  Google Scholar 

  27. Zelikman, A.N., Vol’dman, G.M., and Belyavskaya, L.V., Teoriya gidrometallurgicheskikh protsessov (Theory of Hydrometallurgical Processes), Moscow: Metallurgiya, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kazakov.

Additional information

Original Russian Text © V.V. Vol’khin, D.A. Kazakov, G.V. Leont’eva, Yu.V. Andreeva, E.A. Nosenko, M.Yu. Siluyanova, 2015, published in Zhurnal Prikladnoi Khimii, 2015, Vol. 88, No. 12, pp. 1739–1750.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vol’khin, V.V., Kazakov, D.A., Leont’eva, G.V. et al. Synthesis of struvite (MgNH4PO4·6H2O) and its use for sorption of nickel ions. Russ J Appl Chem 88, 1986–1996 (2015). https://doi.org/10.1134/S10704272150120149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10704272150120149

Keywords

Navigation