Skip to main content
Log in

Use of micrometer hematite particles and nanodispersed goethite as sorbent for heavy metals

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Sorption properties of micrometer hematite particles and goethite nanoparticles were studied. Goethite nanoparticles were produced by chemical precipitation from iron nitrate and stabilized with potassium hydrotartrate. Data on how the sorption properties of goethite nanoparticles depend on temperature and acidity of the medium were used to determine the optimal values of these parameters, at which the maximum sorption of metals are obtained. The higher sorption properties of goethite nanoparticles with respect for all the heavy metal ions under study were found as compared with the micrometer hematite and published data. The results obtained can be used in purification of wastewater containing heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pragnesh, N.D. and Lakhan, V.Ch., J. Nanotechnol., vol. 2014, Article ID 398569. http:dx.doi.org.10.11552014398569.

    Google Scholar 

  2. Ming Hua, Shujuan Zhang, Bingcai Pan, et al., J. Hazard. Mater., 2012, vols. 211–212, pp. 317–331.

    Article  CAS  Google Scholar 

  3. Shipley, H.J., Engates, R.E., and Grover, V.A., Environ Sci. Pollut. Res., 2013, vol. 20, pp. 1727–1736.

    Article  CAS  Google Scholar 

  4. He, D., Xiao, Y., Liang, D., et al., Mater. Sci. Appl., 2011, vol. 2, no. 4, p. 215.

    CAS  Google Scholar 

  5. Hafez, H. and Yousef, H., Int. J. Eng. Sci. Technol., 2012, vol. 4, no. 6, pp. 3018.

    Google Scholar 

  6. Grover, V., Hu J., Engates, K., and Shipley, H., Environ. Toxicol. Chem., 2012, vol. 31, pp. 86–92.

    Article  CAS  Google Scholar 

  7. Jin-Song Hu, Liang-Shu Zhong, Wei-Guo Song, and Li-Jun Wan, Adv. Mater., 2008, vol. 20, pp. 2977–2982.

    Article  CAS  Google Scholar 

  8. Chang-Yan Cao, Jin Qu, Wen-Sheng Yan, et al., Langmuir, 2012, vol. 28, no. 9, pp. 4573–4579. doi: 10.1021la300097y.

    Article  CAS  Google Scholar 

  9. Al-Saad, K.A., Amr, M.A., Hadi, D.T., et al., Arab. J. Nucl. Sci. Appl., 2012, vol. 45, no. 2, pp. 335–346.

    Google Scholar 

  10. Adegoke, H.I., Adegoke, F.A., and Ximba, B.J., Korean J. Chem. Eng., 2014, vol. 31, no. 1, pp. 142–154.

    Article  CAS  Google Scholar 

  11. Massalimov, I.A., Khusainov, A.N., Samsonov, M.R., et al., Bash. Khim. Zh., 2013, vol. 20, no. 4, pp. 76–78.

    CAS  Google Scholar 

  12. Chen, Y.H. and Li, F.A., J. Colloid Interface Sci., 2010, vol. 347, pp. 277–281.

    Article  CAS  Google Scholar 

  13. Benjamin, M.M. and Leckie, J.O., J. Colloid Interface Sci., 1981, vol. 79, no. 1, pp. 209.

    Article  CAS  Google Scholar 

  14. Marsalek, R., Int. J. Environ. Sci. Dev., 2011, vol. 2, no. 4, pp. 253–258.

    Article  Google Scholar 

  15. Mohapatra, M., Mohapatra, L., Singh, P., et al., Int. J. Eng., Sci. Technol., 2010, vol. 2, no. 8, pp. 89–103.

    Google Scholar 

  16. Tikunova, I.V., Shapovalova, N.A., and Artemenko, A.I., Praktikum po analiticheskoi khimii i fiziko-khimicheskim metodam analiza (Practical Course of Analytical Chemistry and Physicochemical Methods of Analysis), Moscow: Vysshaya Shkola, 2006.

    Google Scholar 

  17. Valova, V.D. and Parshina, E.I., Analiticheskaya khimiya i fiziko-khimicheskie metody analiza (Analytical Chemistry and Physicochemical Methods of Analysis), Moscow: Izd. Dashkov i K., 2012.

    Google Scholar 

  18. Ghosh, M.K., Poinern, G.E.J., Issa, T.B., and Singh, P., Korean J. Chem. Eng., 2012, vol. 29, no. 1, pp. 95–102.

    Article  CAS  Google Scholar 

  19. Krehula, S., Popović, S., and Musić, S., Mater. Lett., 2002, vol. 54, pp. 108–113.

    Article  CAS  Google Scholar 

  20. Eidarizaden, F. and Zarei, A., Asian J. Chem., 2008, vol. 20, no. 2, pp. 1514–1518.

    Google Scholar 

  21. Frost, R., Zhu, H.Y., Wu, P., et al., Mater. Lett., 2005, vol. 59, no. 16, pp. 2238–2241.

    Article  CAS  Google Scholar 

  22. Liang, X., Wang, X., Zhuang, J., et al., Adv. Funct. Mater., 2006, vol. 16, pp. 1805–1813.

    Article  Google Scholar 

  23. Mohapatra, M., Gupta, S., Satrati, D., et al., Colloids Surf., A, 2010, vol. 355, pp. 53–60.

    Article  CAS  Google Scholar 

  24. Mohapatra, M. and Anand, S., Int. J. Eng., Sci. Technol., 2010, vol. 2, no. 8, pp. 127–146.

    Google Scholar 

  25. http://rruff.info/Hematite/R070240.

  26. http://rruff.info/Goethite/R050142.

  27. Heinicke, G., Tribochemistry, Munich: Carl Hanser Verlag, 1984.

    Google Scholar 

  28. Schulze, D.G. and Schwertmann, U., Clay Miner., 1948, vol. 19, pp. 521–539.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Massalimov.

Additional information

Original Russian Text © I.A. Massalimov, R.R. Il’yasova, L.R. Musavirova, M.R. Samsonov, A.G. Mustafin, 2014, published in Zhurnal Prikladnoi Khimii, 2014, Vol. 87, No. 10, pp. 1457–1465.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massalimov, I.A., Il’yasova, R.R., Musavirova, L.R. et al. Use of micrometer hematite particles and nanodispersed goethite as sorbent for heavy metals. Russ J Appl Chem 87, 1456–1463 (2014). https://doi.org/10.1134/S1070427214100115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214100115

Keywords

Navigation