Skip to main content
Log in

Specific features of how macropores are formed in dehydration of gibbsite and their influence on physicomechanical properties of floccules

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Reference contact porosimetry and scanning electron microscopy were used to study the formation of macropores in products of gibbsite dehydration in a thermal treatment of coarse floccules at 250–600°C in air. It was shown that macropores with diameters not exceeding 2000 nm and volume reaching a value of 0.032 cm3 g−1 are formed in gibbsite and its dehydration products. The macropores are formed simultaneously with mesopores and, with increasing temperature, undergo transformations by the common mechanism. The macropores are constituted by spaces between secondary particles of oxo hydroxide compounds of aluminum. The pore volume in the dehydration products becomes six times larger as the dehydration temperature is raised to 600°C. This occurs because of the denser packing of secondary particles of the oxide phase: χ-Al2O3, γ-Al2O FBm3 , and γ-Al2O Bm3 . The mesopores do not affect the strength characteristics of the floccules. The wear resistance of floccules in the fluidized bed is inversely proportional to the volume of macropores and decreases to 23% in the temperature range under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukhlenov, I.P. and Pomerantsev, V.M., Kataliz v kipyashchem sloe (Catalysis in Fluidized Bed), Leningrad: Khimiya, 1978.

    Google Scholar 

  2. Pakhomov, N.A., Prom. Kataliz Lektsiyakh, 2006, no. 6, pp. 53–98.

    Google Scholar 

  3. Flid, M.R. and Treger, Yu.A., Vinilkhlorid: khimiya i tekhnologiya, v 2kh knigakh (Vinyl Chloride: Chemistry and Technology, in 2 books), Moscow: Kalvis, 2008, book 1.

    Google Scholar 

  4. Pinakov, V.I., Stoyanovsky, O.I., Tanashev, Yu.Yu., et al., Chem. Eng. J., 2005, vol. 107, pp. 157–161.

    Article  CAS  Google Scholar 

  5. Paramzin, S.M., Zolotovskii, B.N., Buyanov, R.Ya., et al., Sib. Khim. Zh., 1992, no. 2, pp. 130–134.

    Google Scholar 

  6. Vorob’ev, Yu.K., Levitskii, E.A., and Shkrabina, R.A., Kinet. Kataliz, 1981, vol. 22, no. 6, pp. 1595–1602.

    Google Scholar 

  7. Poezd, I.P., Radchenko, E.D., and Poezd, D.F., Neftepererab. Neftekhim., 1978, no. 2, pp. 11–12.

    Google Scholar 

  8. Kutepov, B.I., Veklov, V.L., Yapaev, R.Sh., et al., Khim. Prom-st’, 2001, no. 2, pp. 11–15.

    Google Scholar 

  9. Lopushan, V.I., Kuznetsov, G.F., Pletnev, R.N., et al., Bull. Russ. Acad. Sci., Physics, 2007, vol. 71, no. 8, pp. 1187–1189.

    Article  Google Scholar 

  10. Gong, X., Nie, Z., Qian, M., et al., Ind. Eng. Chem. Res., 2003, vol. 42, no. 10, pp. 2163–2170.

    Article  CAS  Google Scholar 

  11. Egorova, S.R. and Lamberov, A.A., Russ. J. Appl. Chem., 2014, vol. 87, no. 8, pp. 1021–1030.

    Article  CAS  Google Scholar 

  12. Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of Formation of the Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2004.

    Google Scholar 

  13. Ismagilov, Z.R., Shkrabina, R.A., and Koryabkina, N.A., Alyumooksidnye nositeli: proizvodstvo, svoistva i primenenie v kataliticheskikh protsessakh zashchity okruzhayushchei sredy: Analiticheskii obzor (Aluminum Oxide Supports: Manufacture, Properties, and Application in Catalytic Processes of Environment Protection: Analytical Review), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, GPNTB; Inst. Kataliza im. G.K. Boreskova, 1998.

    Google Scholar 

  14. Egorova, S.R., Lamberov, A.A., Bekmukhamedov, G.E., et al., Catalysis in Industry, 2011, vol. 3, no. 2, pp. 210–218.

    Article  Google Scholar 

  15. Stacey, M.H., Langmuir, 1987, vol. 3, no. 5, pp. 681–686.

    Article  CAS  Google Scholar 

  16. Cesteros, Y., Salagre, P., Medina, F., et al., Chem. Mater., 1999, vol. 11, no. 1, pp. 123–129.

    Article  CAS  Google Scholar 

  17. Ch, J., Yi, Y.K., Kim, S.J., et al., Powder Technol., 2013, vol. 235, pp. 556–562.

    Article  CAS  Google Scholar 

  18. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., et al., Colloids Surfaces. A: Physicochem.-Eng. Aspects, 2001, vols. 187–188, pp. 349–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Egorova.

Additional information

Original Russian Text © S.R. Egorova A.A. Lamberov, 2014, published in Zhurnal Prikladnoi Khimii, 2014, Vol. 87, No. 10, pp. 1400–1409.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, S.R., Lamberov, A.A. Specific features of how macropores are formed in dehydration of gibbsite and their influence on physicomechanical properties of floccules. Russ J Appl Chem 87, 1402–1411 (2014). https://doi.org/10.1134/S1070427214100024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214100024

Keywords

Navigation