Skip to main content
Log in

Dynamics simulation and reaction pathway analysis of characteristics of soot particles in ethylene oxidation at high temperature

  • Chemistry of Fossil Fuel
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Soot particles characteristics were investigated numerically for high temperature oxidation of C2H4/O2/N2 (C/O ratio of 2.2) in a closed jet-stirred/plug-flow reactor (JSR/PFR) system. Based on the growth mechanism of polycyclic aromatic hydrocarbons (PAHs), two mechanisms were used to explore the formation pathways of soot precursors and soot. Numerical results were compared with the experimental and reference data. The simulation results show that the value predicted for small molecule intermediates within A1 gives a strong regularity, consistent trend with reference data. However, with the hydrogen-abstraction-carbon-addition (HACA) growth mechanism, the predicted value for beyond-A1 PAH macromolecules and soot volume fraction are smaller than the experimental data. The results also show that the predicted soot volume fraction is in good agreement with experimental data when a combination of the HACA and PAHs condensation (HACA + PAH-PAH) growth mechanisms is used. Analyses of the A1 sensitivity and reaction pathway elucidated that A1 are mainly formed from C2H3, C2H2, C3H3, C6H5OH, A1C2H and A1-. The reaction 2C3H3 → A1 is the dominant route of benzene formation. The prediction results and an analysis of the A3 reaction pathway indicate that the growth process from benzene to larger aromatic hydrocarbons (beyond two-ring polycyclic aromatic hydrocarbons [PAHs]) goes by two pathways, i.e., HACA combined with the PAH-PAH radical recombination and addition reaction growth mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdrakhimova, E.S. and Abdrakhimov, V.Z., Russ. J. Appl. Chem., 2012, vol. 85, no. 8, pp. 1186–1191.

    Article  CAS  Google Scholar 

  2. D’Anna, A., Energy & Fuels, 2008, vol. 22, no. 3, pp. 1610–1619.

    Article  Google Scholar 

  3. Aliev, A.M., Tairov, A.Z., Guseinova, A.M., Babaev, A.I., and Ismailov, N.R., Russ. J. Appl. Chem., 2011, vol. 84, no. 12, pp. 2167–2185.

    Article  CAS  Google Scholar 

  4. Hansen, N., Miller, J.A., Kasper, T., Kohse-Hoinghaus, K., Westmoreland, P.R., Wang, J., and Cool, T.A., Proc. Combust. Inst., 2009, vol. 32, no. 1, pp. 623–630.

    Article  CAS  Google Scholar 

  5. D’anna, A., Violi, A., and D’Alessio, A., Combust. Flame, 2000, vol. 121, no. 3, pp. 418–429.

    Article  Google Scholar 

  6. Violi, A., D’Anna, A., and D’Alessio, A., Chem. Eng. Sci., 1999, vol. 54, no. 15, pp. 3433–3442.

    Article  CAS  Google Scholar 

  7. Ciajolo, A., D’anna, A., Barbella, R., Tregrossi, A. and Violi, A., In Symposium (International) on Combust., 1996, vol. 26, no. 2, pp. 2327–2333.

    Article  Google Scholar 

  8. D’Anna, A. and Violi, A., In Symposium (International) on Combust., 1998, vol. 27, no. 1, pp. 425–433.

    Article  Google Scholar 

  9. D’alessio, A., D’Anna, A., Minutolo, P., Sgro, L.A., and Violi, A., Proc. Combust. Inst., 2000, vol. 28, no. 2, pp. 2547–2554.

    Article  Google Scholar 

  10. Violi, A., Combust. Flame, 2004, vol. 139, no. 4, pp. 279–287.

    Article  CAS  Google Scholar 

  11. D’anna, A., Violi, A., D’alessio, A., and Sarofim, A.F., Combust. Flame, 2001, vol. 127, no. 1, pp. 1995–2003.

    Article  Google Scholar 

  12. Zhang, Y.D., Lou, C., and Li, Y., Asian J. Chem., 2013, vol. 25, no. 15, pp. 8810–8816.

    Article  CAS  Google Scholar 

  13. Zhang, Y.D., Zhou, H.C., et al., Chinese J. Chem. Eng., 2010, vol.18, no. 6, pp. 967–978.

    Article  CAS  Google Scholar 

  14. Skjoth-Rasmussen, M.S., Glarborg, P., Ostberg, M., Johannessen, J.T., Livbjerg, H., Jensen, A.D., and Christensen, T.S., Combust. Flame, 2004, vol. 136, no. 1, pp. 91–128.

    Article  CAS  Google Scholar 

  15. Richter, H. and Howard, J.B., Prog. Energy Combust. Sci., 2000, vol. 26, no. 4, pp. 565–608.

    Article  CAS  Google Scholar 

  16. Wang, H., Proc. Combust. Inst., 2011, vol. 33, no. 1, pp. 41–67.

    Article  Google Scholar 

  17. Zhang, Y.D., Lou, C., Xie, M.L., Fang, Q.Y., and Zhou, H.C., J. Cent. South Univ. Technol., 2011, vol. 18, pp. 1263–1271.

    Article  CAS  Google Scholar 

  18. Musick, M., Van Tiggelen, P.J., and Vandooren, J., Combust. Sci. Technol., 2000, vol. 153, no. 1, pp. 247–261.

    Article  CAS  Google Scholar 

  19. Renard, C., Dias, V., Van Tiggelen, P.J., and Vandooren, J., Proc. Combust. Inst., vol. 32, no. 1, pp. 631–637.

  20. Frenklach, M. and Wang, H., Soot formation in combustion. Springer Berlin Heidelberg, 1994, pp. 165–192.

    Book  Google Scholar 

  21. Frenklach, M., Phys. Chem. Chem. Phys., 2002, vol. 11, no. 4, pp. 2028–2037.

    Article  Google Scholar 

  22. Dworkin, S.B., Zhang, Q., Thomson, M.J., Slavinskaya, N.A., and Riedel, U., Combust. Flame, 2011, vol. 158, no. 9, pp. 1682–1695.

    Article  CAS  Google Scholar 

  23. Slavinskaya, N.A., Riedel, U., Dworkin, S.B., and Thomson, M.J., Combust. Flame, 2012, vol. 159, no. 3, pp. 159–995.

    Article  Google Scholar 

  24. Marr, J. A., Ph.D. Thesis, PAH chemistry in a jet stirred/plug flow reactor system, Massachusetts Institute of Technology, Cambridge, MA, 1993.

    Google Scholar 

  25. Melius, C.F., Colvin, M.E., Marinov, N.M., Pit, W.J., and Senkan, S.M., In Symposium (International) on Combustion, 1996, vol. 26, no. 1, pp. 685–692.

    Article  Google Scholar 

  26. Appel, J., Bockhorn, H., and Frenklach, M., Combust. Flame, 2000, vol.121, no. 1, pp. 122–136.

    Article  CAS  Google Scholar 

  27. Smoluchowski, M.V., Z. Phys. Chem., 1971, vol. 92, pp. 129–132.

    Google Scholar 

  28. Frenklach, M. and Harris, S.J., J. Colloid Interface Sci., 1987, vol. 118, no. 1, pp. 252–261.

    Article  CAS  Google Scholar 

  29. Gordon, S. and McBride, B.J., Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks and Chapman-Jouget Detonations, NASA SP-273, 1971.

    Google Scholar 

  30. Troe, J., Proc. Combust. Inst., 1975, vol. 15, no. 1, pp. 667–680.

    Article  CAS  Google Scholar 

  31. Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., and Miller, J.A., The Chernkin Transport Database, Sandia Report SAND. 86-8246, 1986.

    Google Scholar 

  32. Harris, S.J., Weiner, A.M., and Blint, R.J., Combust. Flame, 1988, vol. 72, pp. 91–109.

    Article  CAS  Google Scholar 

  33. Miller, J.A. and Klippenstein, S.J., J. Phys. Chem. A, 2003, vol. 107, no. 39, pp. 7783–7799.

    Article  CAS  Google Scholar 

  34. Minutolo, P., Gambi, G., and D’Alessio, A., Proc. Combust. Inst., 1998, vol. 27, no. 1, pp. 1461–1469.

    Article  Google Scholar 

  35. Thomas, M.J. and Howard, J.B., Proc. Combust. Inst., 1992, vol. 24, no. 1, pp. 965–971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Zhang.

Additional information

The text was submitted by authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.D., Li, S. & Lou, C. Dynamics simulation and reaction pathway analysis of characteristics of soot particles in ethylene oxidation at high temperature. Russ J Appl Chem 87, 525–535 (2014). https://doi.org/10.1134/S1070427214040223

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214040223

Keywords

Navigation