Skip to main content
Log in

Optimization of environmental friendly process for removal of cadmium from wastewater

  • Various Technological Solutions
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Simple, efficient and eco-friendly electrochemical method for removal and recovery of Cd(II) from wastewater has been studied. Experiments were carried out in a batch electrochemical reactor with iron electrodes. The removal was examined at different pH values and electrical potentials. It was observed that the experiments carried out at 20 V and at pH 9 were sufficient for the maximum removal of Cd(II). This method is highly efficient in removal of Cd(II) from wastewater containing up to 1000 mg L−1. The removal is faster in comparison with the adsorption on activated carbon, which is one of the most important requirements for practical application of this treatment method. In this process, the use of different electrical potentials can provide a wide range of pH values for performing this process. The removal data were used to determine the adsorption kinetics by using the first-order adsorption kinetics model. The data can be analyzed in terms of various adsorption models. The results of Cd(II) removal from real samples indicate that the method used in this study can provide an efficient and cost-effective technology for the treatment of Cd(II)-containing wastewater. The parameters can be used for designing a plant for an economical treatment of Cd(II)-rich water and wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleperis, J. and Linkov, V. Eddy, M.A., Inc Wastewater Engineering, Treatment and Reuse, 4th Edition, McGraw-Hill, New York, 2003.

    Google Scholar 

  2. Kafshgari, F., Keshtkar, A.R., and Mousavian, M.A., Iran. J. of Environ. Health Scie. & Engin., 2013, vol. 10, pp.14–25.

    Article  Google Scholar 

  3. Tej Tanneru, C. and Chellam, S., Wat. Rese., 2012, vol. 46, pp. 2111–2120

    Article  Google Scholar 

  4. Reddithota, D., Yerramilli, A., and Krupadam, R.J., Indi J. of Chem. Tech., 2007, vol. 14, pp. 240–245.

    CAS  Google Scholar 

  5. Vasudevan, J., Lakshmi, S., and Sozhan, G., Toxico & Envir. Chem., 2012, vol. 94, pp. 1930–1940.

    Article  CAS  Google Scholar 

  6. Pajootan, E., Arami, M., and Mahmoodi, N., J. Taiwan Insti. Chem. Engin., 2012, vol. 43, pp. 282–290.

    Article  CAS  Google Scholar 

  7. Comninellis, C. and Chen, G., Electrochemistry for the Environment, Springer, New York, 2010.

    Book  Google Scholar 

  8. Wang, L.K., Shammas, N.K., Selke, W.A., and Aulenbach, D.B., Flotation Technology, Humana Press, 2010.

    Book  Google Scholar 

  9. Martinez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., and Poch, J., Hazard. Mater., 2006, vol. 133, pp. 203–211.

    Article  CAS  Google Scholar 

  10. Li, F.T., Yang, H., Zhao, Y., and Xu, R., Chin. Chem. Lett., 2007, vol. 189, 325–328.

    Article  Google Scholar 

  11. Lekhlif, B. Oudrhiri, L., Zidane, F., Drogui, P., and Blais, J.F., Mater. Environ. Sci., 2014, vol. 5, no. 1, pp. 111–120.

    CAS  Google Scholar 

  12. Sheha, R.R. Moussa, S.I. and Tadros, N.A., Arab J. Nucl. Sci. & Appl., 2013, vol. 46, pp. 1–16.

    Google Scholar 

  13. Boffie, J., Odoi, H.C., Akaho, E.H.K., Nyarko, B.J.B., and Tuffour-Achampong, K., Nucl. Engin. and Design, 2012, Vol. 245, pp. 13–18.

    Article  CAS  Google Scholar 

  14. Mouli, P.C. Mohan S.V. and Reddy, S.J., J. of Scie. & Ind. Rese., 2004, vol. 63, pp. 11–19.

    CAS  Google Scholar 

  15. Sengil, I.A. and Ozacar, M., J. Hazard. Mater., 2009, vol. 16, pp. 1369–1376.

    Article  Google Scholar 

  16. Balasubramaniana, N., Kojimab, T., Basha, C., and Srinivasakannan, C., J. Hazard. Mater., 2009, vol. 167, pp. 966–969.

    Article  Google Scholar 

  17. Babic, B.M., Milonjic, S.K., Polovina, M.J., Cupic, S., and Kaludjerovic, B.V., Carbon, 2002, vol. 40, pp. 1109–1115.

    Article  CAS  Google Scholar 

  18. Mollah, M.Y A., Schennach, R., Parga, J.R. and Cocke, D.L., J. Hazard. Mater., 2001, vol. B84, pp. 29–41.

    Article  Google Scholar 

  19. Saravanan, M. Sambhamurthy, N.P. and Sivarajan, M., CLEAN-Soil, Air, Water, 2010, vol. 38, pp. 565–571.

    Article  CAS  Google Scholar 

  20. Murugananthan, M., Raju, G.B., and Prabhakar, S., J. Hazard. Mater., 2004, vol. 109, pp. 37–44.

    Article  CAS  Google Scholar 

  21. Zaroual, Z., Azzi, M., Saib, N., and Chainet, E., J. Hazard. Mater., 2006, vol. 131, pp. 73–78.

    Article  CAS  Google Scholar 

  22. Hamed, Mostafa, M., Yakout, S.M., and Hassan, H.S., J. Radioanal. Nucl. Chem., 2013, vol. 295, pp. 697–708.

    Article  CAS  Google Scholar 

  23. Attallah, M.F. Ahmed, I.M., and Hamed, Mostafa M., Environ. Sci. Pollut. Res., 2013, vol. 20, pp. 1106–1116.

    Article  CAS  Google Scholar 

  24. Balasubramanian, N., Kojima, T., and Srinivasakannan, C., Chem. Engin. J., 2009, vol. 155, pp.76–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. Hamed.

Additional information

The text was submitted by authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aglan, R.F., Hamed, M.M. Optimization of environmental friendly process for removal of cadmium from wastewater. Russ J Appl Chem 87, 373–382 (2014). https://doi.org/10.1134/S1070427214030215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214030215

Keywords

Navigation