Skip to main content
Log in

Electrical properties of polymeric composites based on nanocrystalline tin dioxide modified with copper iodide

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Electrical properties of synthesized nanostructured materials based on nanocrystalline tin dioxide modified with copper iodide and polychlorotrifl uoroethylene were studied. It was shown that the complex dielectric permittivity in the microwave range and the low-frequency electrical conductivity of the polymeric composites depend on the copper iodide concentration on the surface of tin dioxide and reach the maximum values at a volume fraction of CuI of about 0.5. The percolation thresholds were determined for the three-component system. Their values increase from 0.04 to 0.05 vol. fraction as the content of copper iodide in the CuI/SnO2 system is raised from 0.04 to 0.6 vol. fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pomogailo, A.D., Rozenberg, A.S., and Ufl yand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  2. Pomogailo, A.D., Ros. Khim. Zh., 2002, vol. 46, no. 5, pp. 64–73.

    CAS  Google Scholar 

  3. Berlin, A.A., Vol’fson, S.A., Oshmyan, V.G., and Enikolopov, N.S., Printsipy sozdaniya kompozitsionnykh materialov (Principles of Development of Composite Materials), Moscow: Khimiya, 1990.

    Google Scholar 

  4. Lipatov, Yu.S., Polymer Reinforcement, Toronto: Chem. Techn. Publ., 1995.

    Google Scholar 

  5. Nan, C.-W., Fan, L.Z., Lin, Y., and Cai, Q., Phys. Rev. Lett., 2003, vol. 26, no. 1, p. 2661041.

    Google Scholar 

  6. Yayathilaka, P.A.R.D., Dissanayake, M.A.K.L., Albinsson, I., and Mellander, B.E., Electrochim. Acta, 2002, vol. 47, no. 20, pp. 3257–3268.

    Article  Google Scholar 

  7. Buchachenko, A.L., Russ. Chem.Rev., 2003, vol. 72, no. 5, pp. 375–391.

    Article  CAS  Google Scholar 

  8. Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, Roco, M.S., Williams, R.S., and Alivisatos, P., Eds., Springer Netherlands, 1999.

    Google Scholar 

  9. Andrievskii, R.A., Ros. Khim. Zh., 2002, vol. 46, no. 5, pp. 50–56.

    CAS  Google Scholar 

  10. Sergent, N., Gelin, P., Perier-Camby, L., et al., Sensors Actuators, 2002, vol. B 84, pp. 176–188.

    Article  Google Scholar 

  11. Handbuch der Praparativen Anorganischen Chemie, Brauer, G., Ed., Stuttgart: Ferdinand Enke Verlag, 1978.

    Google Scholar 

  12. Trakhtenberg, L.I., Gerasimov, G.N., and Grigor’ev, E.I., Russ. J. Phys. Chem., 1999, vol. 73, no. 2, pp. 209–220.

    Google Scholar 

  13. Bunde, A. and Havin, S., Fractals and Disordered Systems, Berlin: Springer-Verlag, 1996.

    Book  Google Scholar 

  14. Ganyuk, L.N., Ignatkov, V.D., Makhno, S.N., and Soroka, P.N., Ukr. Fiz. Zh., 1995, vol. 40, no. 6, pp. 627–629.

    CAS  Google Scholar 

  15. Pavlov, L.P., Metody opredeleniya parametrov poluprovodnikovykh materialov (Methods for Determining Parameters of Semiconducting Materials), Moscow: Vysshaya Shkola, 1987.

    Google Scholar 

  16. Nikol’skii, V.V. and Nikol’skaya, T.I., Elektrodinamika i rasprostranenie radiovoln (Electrodynamics and Propagation of Radio Waves), Moscow: Nauka, 1989.

    Google Scholar 

  17. Guinier, A., X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Courier Dover Publications, 1994.

    Google Scholar 

  18. Ivanov, V.V., Sidorak, I.A., Shubin, A.A., and Denisova, L.T., J. Eng. Technol., 2010, vol. 2, no. 3, pp. 189–213.

    Google Scholar 

  19. Mironyuk, I.F., Chelyadin, V.L., Kotsyubins’kii, V.O., and Mironyuk, L.I., Fiz. Khim. Tverd. Tila, 2011, vol. 12, no. 1, pp. 174–181.

    Google Scholar 

  20. Rumyantseva, M.N., Bulova, M.N., Chareev, D.A., and Ryabova, L.I., Vestn. Mosk. Gos. Univ., Ser. 2, 2001, vol. 42, no. 5, pp. 348–355.

    CAS  Google Scholar 

  21. Gorbik, P.P., Levandovs’kyi, V.V., Mazurenko, R.V., et al., Phys. Chem. Solid State, 2006, vol. 7, no. 4, pp. 713–716.

    CAS  Google Scholar 

  22. Nanomaterialy i nanokompozity v meditsine, biologii, ekologii (Nanomaterials and Nanocomposites in Medicine, Biology, Ecology), Shpak, A.P. and Chekhun, V.F., Eds., Kiev: Naukova Dumka, 2011.

    Google Scholar 

  23. Mazurenko, R.V., Makhno, S.M., Mishchenko, V.M., et al., Metallofiz. Noveish. Tekhnol., 2011, vol. 33, no. 12, pp. 1603–1611.

    CAS  Google Scholar 

  24. Mazurenko, R.V., Gunya, G.M., Makhno, S.M., and Gorbik, P.P., Khim. Fiz. Tekhnol. Poverkhn?, 2013, vol. 4, no. 4, pp. 391–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Mazurenko.

Additional information

Original Russian Text © R.V. Mazurenko, G.M. Gunya, S.N. Makhno, P.P. Gorbik, 2014, published in Zhurnal Prikladnoi Khimii, 2014, Vol. 87, No. 2, pp. 198–202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazurenko, R.V., Gunya, G.M., Makhno, S.N. et al. Electrical properties of polymeric composites based on nanocrystalline tin dioxide modified with copper iodide. Russ J Appl Chem 87, 179–183 (2014). https://doi.org/10.1134/S1070427214020098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214020098

Keywords

Navigation