Skip to main content
Log in

Kinetics of oxygen absorption by aqueous electrolyte solutions in the presence of microencapsulated quartz particles activating the mass transfer in the liquid phase

  • Sorption Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Effect of the ion composition of aqueous solutions on the oxygen absorption kinetics in a system constituted by a gas (air) and a liquid (aqueous solution) in the presence of microencapsulated quartz particles activating the mass transfer in the liquid phase was studied. It was found that ions with positive hydration cause a substantial decrease in the O2 mass-transfer enhancement factor, whereas ions with negative hydration lead to its increase under the same conditions. It is shown that the effect of ions on the rate of oxygen absorption by aqueous electrolyte solutions can be prognosticated on the basis of data on the influence of these ions on the structure and viscosity of water. The results of the study can serve as a basis for varying the rate of heterogeneous reactions in gas-liquid systems, whose rate is limited by the mass transfer of oxygen into aqueous media, by purposeful control over their ion composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gros, J.B., Dussap, C.G., and Catte, M., Biotechnol. Prog., 1999, vol. 15, no. 5, pp. 923–927.

    Article  CAS  Google Scholar 

  2. Jamnongwong, M., Loubiered, K., Dietricha, N., and Hebrar, G., Chem. Eng. J., 2010, vol. 165, no. 3, pp. 758–768.

    Article  CAS  Google Scholar 

  3. Komissarov, Yu.A., Gordeev, L.S., and Zhijian, Ts., Teor. Osn. Khim. Technol., 2011, vol. 45, no. 1, pp. 108–113.

    CAS  Google Scholar 

  4. Hung, Ch.-M., J. Hazardous Materials, 2009, vol. 166, nos. 2–3, pp. 1314–1320.

    Article  CAS  Google Scholar 

  5. Delidovich, I.V., Moroz, B.L., Taran, O.P., et al., Chem. Eng. J., 2013, vol. 223, no. 5, pp. 921–931.

    Article  CAS  Google Scholar 

  6. Borovkova, I.S., Vol’khin, V.V., and Kazakov, D.A., Kataliz Prom-ti, 2011, no. 2, pp. 66–72.

    Google Scholar 

  7. Soria-Sanchez, M., Maroto-Valiente, A., Alvarez-Rodrıguez, J., et al., Carbon, 2009, vol. 47, no. 8, pp. 2095–2102.

    Article  CAS  Google Scholar 

  8. Quijano, G., Hernandez, M., Villaverde, S., et al., Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 3, pp. 543–551.

    Article  CAS  Google Scholar 

  9. Hernandez, M., Quijano, G., Thalasso, F., et al., Biotechnol. Bioeng., 2010, vol. 106, no. 5, pp. 731–740.

    Article  CAS  Google Scholar 

  10. Mena, P., Ferreira, A., Teixeira, J.A., and Rocha, F., Chem. Eng. Proc., 2011, vol. 50, no. 2, pp. 181–188.

    Article  CAS  Google Scholar 

  11. Ruthiya, K.C., van der Schaaf, J., Kuster, B.F.M., and Schouten, J.C., Ind. Eng. Chem. Res., 2005, vol. 44, no. 16, pp. 6123–6140.

    Article  CAS  Google Scholar 

  12. Ozkan, O., Calimli, A., Berber, R., et al., Chem. Eng. Sci., 2000, vol. 55, no. 14, pp. 2737–2740.

    Article  CAS  Google Scholar 

  13. RF Patent 2460567.

  14. Hill, G.A., Ind. Eng. Chem. Res., 2009, vol. 48, no. 7, pp. 3696–3699.

    Article  CAS  Google Scholar 

  15. Hermann, C., Dewes, I., and Schumpe, A., Chem. Eng. Sci., 1995, vol. 50, no. 10, pp. 1673–1675.

    Article  CAS  Google Scholar 

  16. Ruthiya, K.C., van der Schaaf, J., Kuster, B.F.M., et al., Chem. Eng. J., 2003, vol. 96, nos. 1–3, pp. 55–69.

    Article  CAS  Google Scholar 

  17. Ramm, V.M., Absorbtsiya gazov (Absorption of Gases), Moscow: Khimiya, 1976.

    Google Scholar 

  18. Atkins, P. and de Paula, J., Physical Chemistry, Oxford: Oxford University Press, 2010.

    Google Scholar 

  19. Krestov, G.A., Termodinamika ionnykh protsessov v rastvorakh (Thermodynamics of Ionic Processes in Solutions), Leningrad: Khimiya, 1984.

    Google Scholar 

  20. Marcus, Y., Pure Appl. Chem., 2010, vol. 82, no. 10, pp. 1889–1899.

    Article  CAS  Google Scholar 

  21. Erdey Grús, Transport Phenomena in Aqueous Solutions, Halster Press, 1974.

    Google Scholar 

  22. Akita, K., Ind. Eng. Chem. Fundam., 1981, vol. 20, no. 1, pp. 89–94.

    Article  CAS  Google Scholar 

  23. Jungwirth, P. and Tobias, D.J., Chem. Rev., 2006, vol. 106, no. 4, pp. 1259–1281.

    Article  CAS  Google Scholar 

  24. Song, Y., Zhao, K., Wang, J., et al., J. Colloid Interface Sci., 2014, vol. 416, no. 1, pp. 101–104.

    Article  CAS  Google Scholar 

  25. Slavchov, R.I., Novev, J.K., Peshkova, T.V., and Grozev, N.A., J. Colloid Interface Sci., 2013, vol. 403, no. 8, pp. 113–126.

    Article  CAS  Google Scholar 

  26. Dos Santos, A.P., Diehl, A., and Levin, Y., Langmuir, 2010, vol. 26, no. 13, pp. 10778–10783.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kazakov.

Additional information

Original Russian Text © D.A. Kazakov, V.V. Vol’khin, I.S. Borovkova, N.P. Popova, 2014, published in Zhurnal Prikladnoi Khimii, 2014, Vol. 87, No. 1, pp. 93–99.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazakov, D.A., Vol’khin, V.V., Borovkova, I.S. et al. Kinetics of oxygen absorption by aqueous electrolyte solutions in the presence of microencapsulated quartz particles activating the mass transfer in the liquid phase. Russ J Appl Chem 87, 88–94 (2014). https://doi.org/10.1134/S1070427214010133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214010133

Keywords

Navigation