Skip to main content
Log in

Kinetics of electrode processes on a bismuth electrode in acid solutions containing thiourea and formamidine disulphide

  • Technology of Electrochemical Industry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A study of the mechanism by which bismuth is electrodissolved in an aqueous solution of thiourea on the background of H2SO4 demonstrated that, in the thiourea concentration range 0.001 M < c < 0.5 M, a current oscillation is observed in cyclic voltammograms at E ≈ 0.4–0.3 V when the potential is swept from the anodic to the cathodic region. This oscillation is due to the loosening of the passivating film formed in the anodic process. It is shown that thiourea is not oxidized to formamidine disulphide at the bismuth electrode. thiourea and formamidine disulphide have mutually opposite effects on the height of the cathodic peak: the peak current falls with increasing thiourea concentration and grows with increasing formamidine disulphide concentration. According to the results of an X-ray fl uorescence analysis, sulfur is formed on the bismuth electrode upon its prolonged polarization of in a 0.5 M solution of thiourea. An explanation is provided for the experimental facts observed in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal R. and Namboodhiri, T.K.G., Corros. Sci., 1990, vol. 30, pp. 37–52.

    Article  CAS  Google Scholar 

  2. Bolzan, A.E., Wakenge, I.B., Piatti, R.C.V., et al., J. Electroanal. Chem., 2001, vol. 501, pp. 241–252.

    Article  CAS  Google Scholar 

  3. Alodan, M. and Smyr, W., Electrochim. Acta, 1998, vol. 44, pp. 299–309.

    Article  CAS  Google Scholar 

  4. Mohanty, U.S., Tripathy, B.C., Das, S.C., and Misra, V.N., Metall. Mater. Trans., 2005, vol. B36, pp. 737–741.

    Article  Google Scholar 

  5. Bek, R.Yu. and Shevtsova, O.N., Russ. J. Electrochem., 2011, vol. 47, no. 9, pp. 1029–1034.

    Article  CAS  Google Scholar 

  6. Shevtsova, O.N., Bek, R.Yu., Zelinskii, A.G., and Vais, A.A., Russ. J. Electrochem., 2006, vol. 42, no. 3, pp. 239–244.

    Article  CAS  Google Scholar 

  7. Kozin, L.F., Kozina, S.A., and Bogdanova, A.K., Zashch. Met., 2005, vol. 41, no. 3, pp. 315–325.

    Google Scholar 

  8. Groenewald, T., J. Appl. Electrochem., 1975, vol. 5, pp. 71–78.

    Article  CAS  Google Scholar 

  9. Zhang, H., Ritchie, I.M., and La Brooy, R.S., Hydrometallurgy, 2004, vol. 72, pp. 291–301.

    Article  CAS  Google Scholar 

  10. Bolzan, A.E., Iwasita, T., and Arvia, A.J., J. Electroanal. Chem., 2003, vols. 554–555, pp. 49–60.

    Article  CAS  Google Scholar 

  11. Tian, M. and Conway, B.E., J. Appl. Electrochem., 2004, vol. 34, pp. 533–543.

    Article  CAS  Google Scholar 

  12. Bolzan, A.E., Piatti, R.C.V., and Arvia, A.J., J. Electroanal. Chem., 2003, vol. 552, pp. 19–34.

    Article  CAS  Google Scholar 

  13. Garcia, G., Rodriguez, J.L., Lacconi, G.I., and Pastor, E., J. Electroanal. Chem., 2006, vol. 588, pp. 169–178.

    Article  CAS  Google Scholar 

  14. Petrova, T.P., Starodubets, E.E., and Shapnik, A.M., Vestn. Kazan Tekhnol. Univ., 2012, vol. 7, pp. 182–185.

    Google Scholar 

  15. Petrova, T.P., Starodubets, E.E., and Shapnik, A.M., Vestn. Kazan Tekhnol. Univ., 2013, vol. 16, no. 8, pp. 266–271.

    Google Scholar 

  16. Preisler, P.W. and Berger, L., J. Am. Chem. Soc., 1947, vol. 69, pp. 322–325.

    Article  CAS  Google Scholar 

  17. Brossard, R.L., Canad. J. Chem., 1984, vol. 62, no. 6, pp. 1112–1119.

    Article  CAS  Google Scholar 

  18. Brossard, R.L., J. Electrochem. Soc., 1984, vol. 131, no. 8, pp. 1847–1849.

    Article  CAS  Google Scholar 

  19. Nechiporuk, V.V., Tkachuk, M.M., and Yuz’kova, V.D., Russ. J. Electrochem., 2007, vol. 43, no. 9, pp. 1047–1054.

    Article  CAS  Google Scholar 

  20. Khobotova, E.B. and Larin, V.I., Zh. Prikl. Khim., 1995, vol. 68, no. 3, pp. 416–420.

    CAS  Google Scholar 

  21. Bek, R.Yu., Shuraeva, L.I., Ovchinnikova, S.N., and Kenzin, V.I., Russ. J. Electrochem., 2007, vol. 43, no. 11, pp. 1260–1267.

    Article  CAS  Google Scholar 

  22. Bek, R.Yu. and Shuraeva, L.I., Russ. J. Electrochem., 2006, vol. 42, no. 4, pp. 340–346.

    Article  CAS  Google Scholar 

  23. Petrova, T.P., Starodubets, E.E., Borisevich, S.V., and Shapnik, A.M., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, no. 1, pp. 59–63.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Petrova.

Additional information

Original Russian Text © T.P. Petrova, E.E. Starodubets, A.M. Shapnik, 2014, published in Zhurnal Prikladnoi Khimii, 2014, Vol. 87, No. 1, pp. 52–57.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, T.P., Starodubets, E.E. & Shapnik, A.M. Kinetics of electrode processes on a bismuth electrode in acid solutions containing thiourea and formamidine disulphide. Russ J Appl Chem 87, 48–53 (2014). https://doi.org/10.1134/S1070427214010078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427214010078

Keywords

Navigation