Skip to main content
Log in

Application of the electron paramagnetic resonance method to determining the antioxidant activity of structured colloid systems

  • Technologies in Heterogeneous Systems
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Possibility of using the electron paramagnetic resonance method to study the antioxidant activity of structured colloid systems with active components: polymeric cosmetic gels, foaming detergents (shampoos), and lotions. It is shown that this versatile method opens up new opportunities for determination of the antioxidant activity not only in liquid-phase systems, but also in gels without any considerable disintegration of their structure. The antioxidant activity is affected by the concentration of additives, nature of an extract, and composition of formulation ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harman, D.J., Antioxidants Redox Signaling, 2003, no. 5(5), pp. 557–561.

    Google Scholar 

  2. Yanishlieva, N.V., Marinova, E., and Pokorny, J., Eur. J. Lipid Sci. Technol., 2006, vol. 108, no. 9, pp. 776–793.

    Article  CAS  Google Scholar 

  3. Augustyniak, A., Bartosz, G., Cipak, A., et al., Free Radical Research, 2010, no. 44(10), pp. 1216–1262.

    Google Scholar 

  4. Romanova, Yu.A., Bogdanova, S.A., Zalyalyutdinova, L.N., et al., Vestn. Kazan. Tekhnol. Univ., 2010, no. 10, pp. 52–56.

    Google Scholar 

  5. Sysoeva, M.A., Ivanova, G.A., Gamaiourova, V.S., et al., J. Chem. Plant Raw Material, 2010, no. 2, pp. 105–108.

    Google Scholar 

  6. Hsu, S., J. Am. Acad. Dermatol., 2005, vol. 52, no. 6, pp. 1049–1059.

    Article  Google Scholar 

  7. Izmailov, S.G., Izmailov, G.A., Aver’yanov, V.Yu., and Reznik, V.S., Xymedon in Clinical Practice, Nizhni Novgorod: NGMA, 2001.

    Google Scholar 

  8. Romanova, Yu.A., Vasil’eva, K.S., Kolesnikova, I.A., et al., Vestn. Kazan. Tekhnol. Univ., 2011, no. 10, pp. 305–307.

    Google Scholar 

  9. Khasanov, V.V., Ryzhova, G.L., and Mal’tseva, E.V., Khim. Rastit. Syr’ya, 2004, no. 3, pp. 63–75.

    Google Scholar 

  10. Kim, M.Y., Choi, S.W., and Chung, S.K., J. Food Sci. Biotechnol., 2000, vol. 9, no. 4, pp. 199–203.

    Google Scholar 

  11. Khizhan, E.I., Khizhan, A.I., Tikhonova, G.A., and Maslova, V.Yu., Zh. Prikl. Khim., 2012, vol. 85, no. 3, pp. 490–494.

    Google Scholar 

  12. Chen, I.C., Chang, H.C., Yang, H.W., and Chen, G.L., J. Food Drug Analysis, 2004, vol. 12, no. 1, pp. 29–33.

    CAS  Google Scholar 

  13. Yang, X.F. and Guo, X.Q., The Analyst, 2001, no. 126, pp. 928–932.

    Google Scholar 

  14. Hodder, P.S., Beeson, C., and Ruzicka, J., Analyt. Chem., 2000, vol. 72, pp. 3109–3115.

    Article  CAS  Google Scholar 

  15. Madhujith, T. and Shahidi, F., J. Agric. Food Chem., 2006, no. 54, pp. 8048–8057.

    Google Scholar 

  16. Foti, M.C., Daquino, C., DiLabio, G.A., and Ingold, K.U., Org. Lett., 2011, vol. 13, no. 18, pp. 4826–4829.

    Article  CAS  Google Scholar 

  17. Orcic, D.Z., Mimica-Dukic, N.M., Franciskovic, M.M., et al., Chem. Central J., 2011, vol. 5, no. 34, pp. 1–8.

    Google Scholar 

  18. Prior, R.L., Wu, X., and Schaich, K., J. Agric. Food Chem., 2005, no. 53, pp. 4290–4302.

    Google Scholar 

  19. Santos, A.B., Silva, D.H.S., Bolzani, V.S., et al., J. Braz. Chem. Soc., 2009, vol. 20, no. 8, pp. 1483–1492.

    Article  Google Scholar 

  20. Volkov, V.A., Dorofeeva, N.A., and Pakhomov, P.M., Pharm. Chem. J., 2009, vol. 43, no. 6, pp. 333–337.

    Article  CAS  Google Scholar 

  21. Molyneux, P. and Songklanakarin, J., Sci. Technol., 2004, vol. 26, no. 2, pp. 211–219.

    CAS  Google Scholar 

  22. Sgherri, C., Pinzino, C., Navari-Izzo, F., and Izzo, R., J. Sci. Food Agric., 2011, no. 91, pp. 1128–1134.

    Google Scholar 

  23. Lin, S., Yang, B., Chen, F., et al., Chem. Central J., 2012, vol. 6, no. 108, pp. 1–8.

    Google Scholar 

  24. Silva, B.A., Ferreres, F., Malva, J.O., and Dias, A.C.P., J. Food Chem., 2005, vol. 90, nos. 1–2, pp. 157–167.

    Article  CAS  Google Scholar 

  25. Rybachenko, V.I., Il’kevich, N.S., Shreder, G., et al., Nauch. Raboty Donetsk. Nats. Tekhn. Univ., Ser. Khim., 2007, no. 119, pp. 77–80.

    Google Scholar 

  26. Gizdavic-Nicolaidis, M., Travas-Sejdic, J., Kilmartin, P.A., et al., J. Current Appl. Phys., 2004, no. 4, pp. 343–347.

    Google Scholar 

  27. RF Patent 2448721.

  28. RF Patent 2464032.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shigabieva.

Additional information

Original Russian Text © Yu.A. Shigabieva, S.A. Bogdanova, V.I. Morozov, M.K. Kadirov, Yu.G. Galyametdinov, 2013, published in Zhurnal Prikladnoi Khimii, 2013, Vol. 86, No. 8, pp. 1331–1336.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shigabieva, Y.A., Bogdanova, S.A., Morozov, V.I. et al. Application of the electron paramagnetic resonance method to determining the antioxidant activity of structured colloid systems. Russ J Appl Chem 86, 1305–1310 (2013). https://doi.org/10.1134/S1070427213080259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427213080259

Keywords

Navigation