Skip to main content
Log in

Formation of gold nanoparticles in aqueous solutions of cellulose derivatives and a study of the properties of these nanoparticles

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

It was demonstrated that gold nanoparticles can be obtained by using cellulose ethers, methyl hydroxyethyl cellulose and carboxymethylcellulose as reducing agents and also as nanoparticle stabilizers. IR spectral studies revealed a difference between the mechanisms of reduction and nanoparticle stabilization by these cellulose derivatives. A scanning tunnel microscope was used to examine composite films formed from nanoparticle dispersions on the surface of polycrystalline gold films. It was demonstrated that, in the case of gold nanoparticles, densely packed globular structures are formed in a carboxymethyl cellulose solution. A fibril-like structure of layers is formed in the Au+(methyl hydroxyethyl cellulose) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastas, P. and Warner, J., Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998.

    Google Scholar 

  2. Serebryakova, N.V., Uryupina, O.Ya., and Roldugin, V.I., Kolloid. Zh., 2005, vol. 67, p. 87.

    Google Scholar 

  3. Vysotskii, V.V., Uryupina, O.Ya., Roldugin, V.I., and Plachev, Yu.A., Kolloid. Zh., 2009, vol. 71, p. 164.

    Google Scholar 

  4. Banks, S.R., Sammon, C., Melia, C.D., and Timmins, P., Appl. Spectrosc., 2005, vol. 59, p. 452.

    Article  CAS  Google Scholar 

  5. Buslov, D.K., Sushko, N.I., and Tretinnikov, O.N., Zh. Prikl. Spektrosk., 2008, vol. 75, p. 490.

    Google Scholar 

  6. Andrianov, V.M. and Zhbankov, R.G., Zh. Prikl. Spektrosk., 2006, vol. 73, p. 42.

    CAS  Google Scholar 

  7. Marechal, Y. and Chanzy, H., J. Molec. Struct., 2000, vol. 523, p. 183.

    Article  CAS  Google Scholar 

  8. Deacon, G.B. and Phillips, R.J., Coordination Chem. Rev., 1980, vol. 33, p. 227.

    Article  CAS  Google Scholar 

  9. Little, L.H., Infrared Spectra of Adsorbed Species, Academic Press, 1966.

    Google Scholar 

  10. Rochester, C.H. and Topham, S.A., J. Chem. Soc. Faraday Trans. 1, 1979, vol. 75, p. 591.

    Article  CAS  Google Scholar 

  11. Jchikava, T., Nitta, S., and Kondo, S., J. Chem. Soc. Faraday Trans.1, 1986, vol. 82, p. 2401.

    Google Scholar 

  12. Zhbankov, R.G., Optika i spektroskopiya. III. Molekulyarnye spektry (Optics and Spectroscopy, III, Molecular Spectra), Moscow: Nauka, 1967.

    Google Scholar 

  13. Komar, V.P., Zhbankov, R.G., and Prima, A.M., Zh. Strukt. Khim., 1967, vol. 8, p. 252.

    CAS  Google Scholar 

  14. Loskutov, A.I., Uryupina, O.Ya., Vysotskii, V.V., and Kiselev, M.R., Nanotekhnika, 2010, no. 21, p. 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ya. Uryupina.

Additional information

Original Russian Text © O.Ya. Uryupina, V.V. Vysotskii, A.I. Loskutov, A.V. Cherkasova, V.I. Roldugin, 2013, published in Zhurnal Prikladnoi Khimii, 2013, Vol. 86, No. 8, pp. 1294–1300.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uryupina, O.Y., Vysotskii, V.V., Loskutov, A.I. et al. Formation of gold nanoparticles in aqueous solutions of cellulose derivatives and a study of the properties of these nanoparticles. Russ J Appl Chem 86, 1268–1274 (2013). https://doi.org/10.1134/S1070427213080193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427213080193

Keywords

Navigation