Skip to main content
Log in

New low-temperature method for joint synthesis of C60 fullerene and new carbon molecules in the form of C3-C15 and quasi-fullerenes C48, C42, C40

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Method for joint synthesis of C60 fullerene and new carbon molecules in the form of C3-C15 and quasifullerenes C48, C42, and C40, alternative to arc-discharge technique, was developed for the first time. The process of fullerenization of benzene molecules into carbon molecules is performed at comparatively low (∼1000°C) temperatures. It is shown that C3-C18 nanoclusters are generated as main components of a monoatomic carbon vapor under conditions that rule out sublimation of carbon. Crystalline substances containing exceedingly active small carbon molecules were synthesized for the first time. The products of benzene fullerenization were studied by methods of mass-spectrometric analysis, electron-probe X-ray microanalysis, and optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langa, F., Fullerenes: Principles and Applications, Langa, F. and Nierengarten, J.F., Eds., Cambridge: RSC Publishing, 2012.

  2. Cataldo, F. and Iglesias-Groth, S., Fulleranes: The Hydrogenated Fullerenes, Dordrecht: Springer, 2010.

    Book  Google Scholar 

  3. Hirsch, A. and Brettreich, M., Fullerenes: Chemistry and Reactions, Hirsch, A. and Brettreich, M., Weinheim: Wiley-VCH verlag Gmbh & Co, 2005.

  4. Melinon, P., From Small Fullerenes to Superlattices: Science and Applications, Melinon, P. and Masenelli, B., Eds., Stanford: Pan Stanford Publishing, 2012.

  5. Krueger, A., Carbon Materials and Nanotechnology, Weinheim: Wiley-VCH verlag Gmbh&Co, 2010.

    Book  Google Scholar 

  6. Tan, Y.Z., Xie, S.Y., Huang, R.B., and Zheng, L.S., Nature Chem., 2009, vol. 1, no. 6, pp. 450–460.

    Article  CAS  Google Scholar 

  7. Kharlamov, A.I., Bondarenko, M.E., and Kirillova, N.V., Zh. Prikl. Khim., 2012, vol. 85, no. 2, pp. 244–249.

    Google Scholar 

  8. Kharlamov, A.I., Kirillova, N.V., Loichenko, S.V., et al., Dop. Nats. Akad. Nauk Ukraïni, 2004, no. 1, pp. 95–100.

    Google Scholar 

  9. Kharlamov, A.I., Ushkalov, L.N., Kirillova, N.V., et al., Dop. Nats. Akad. Nauk Ukraïni, 2006, no. 3, pp. 97–103.

    Google Scholar 

  10. Kharlamov, A.I. and Kirillova, N.V., Dop. Nats. Akad. Nauk Ukraïni, 2009, no. 5, pp. 115–122.

    Google Scholar 

  11. Kharlamov, A.I. and Kirillova, N.V., Dop. Nats. Akad. Nauk Ukraïni, 2011, no. 6, pp. 156–163.

    Google Scholar 

  12. Kharlamov, O., Kharlamova, G., Kirillova, N., et al., Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, NATO Science for Peace and Security Series, Vaseashta, A. et al., Eds. A: Chemistry and Biology, Springer Science+Business Media B.V., 2012, pp. 245–253.

  13. Agafonov, G., Vlasov, P., and Smirnov, V., Kinet. Catal., 2011, vol. 52, no. 3, pp. 358–370.

    Article  CAS  Google Scholar 

  14. Conley, N.R. and Lagowski, J.J., Carbon, 2002, vol. 40, no. 6, pp. 949–953.

    Article  CAS  Google Scholar 

  15. Amsharov, K.Y. and Jansen, M., Carbon, 2007, vol. 45, no. 1, pp. 117–123.

    Article  CAS  Google Scholar 

  16. Petcu, S., Cauchetier, M., Armand, X., et al., Combust. Flame, 2000, vol. 122, no. 4, pp. 500–507.

    Article  CAS  Google Scholar 

  17. Amsharov, K.Y., Simeonov, K., and Jansen, M., Carbon, 2007, vol. 45, no. 2, pp. 337–343.

    Article  CAS  Google Scholar 

  18. Crowley, C.J., Taylor, R., Kroto, H.W., et al., Synth. Met., 1996, vol. 77, nos. 1–3, pp. 17–22.

    Article  CAS  Google Scholar 

  19. Wakabayashi, T. and Kratschmer, W., Polyynes: Synthesis, Properties and Applications, Cataldo, F., Ed., New York: Taylor, 2006. Chapter 1, pp. 1–15.

  20. Orden, A.V. and Saykally, R.J., Chem. Rev., 1998, vol. 98, no. 6, pp. 2313–2357.

    Article  Google Scholar 

  21. Gerhardt, Ph., Loeffer, S., and Homann, K.H., Chem. Phys. Lett., 1987, vol. 137, no. 4, pp. 306–310.

    Article  CAS  Google Scholar 

  22. Howard, J.B., McKinnon, J.T., Makarovsky, Y., et al., Nature, 1991, vol. 352, pp. 139–141.

    Article  CAS  Google Scholar 

  23. Howard, J.B., Lafleur, A.L., Makarovsky, Y., et al., Carbon, 1992, vol. 30, no. 8, pp. 1183–1201.

    Article  CAS  Google Scholar 

  24. Kong, Q., Zhao, L., Zhuang, J., et al., Int. J. Mass Spectrom., 2001, vol. 209, no. 1, pp. 69–79.

    Article  CAS  Google Scholar 

  25. Cataldo, F., Carbon, 2004, vol. 42, no. 1, pp. 129–142.

    Article  CAS  Google Scholar 

  26. Prinzbach, H., Weiler, A., Landenberger, P., et al., Nature, 2000, vol. 407, no. 6800, pp. 60–63.

    Article  CAS  Google Scholar 

  27. Piskoti, C., Yarger, J., and Zettl, A., Nature, 1998, vol. 393, no. 6687, pp. 771–774.

    Article  CAS  Google Scholar 

  28. Xie, S.Y., Gao, F., Lu, X., et al., Science, 2004, vol. 304, no. 5671, pp. 699–699.

    Article  CAS  Google Scholar 

  29. Koshio, A., Inakuma, M., Sugai, T., and Shinohara, H., J. Am. Chem. Soc., 2000, vol. 122, pp. 398–399.

    Article  CAS  Google Scholar 

  30. Wang, Z., Ke, X., Zhu, Z., et al., Phys. Lett. A, 2001, vol. 280, nos. 5–6, pp. 351–356.

    Article  CAS  Google Scholar 

  31. Iqbal, Z., Zhang, Y., Grebel, H., et al., Eur. Phys. J. B, 2003, vol. 31, no. 4, pp. 509–515.

    Article  CAS  Google Scholar 

  32. Kharlamov, A.I., Kharlamova, G.A., and Bondarenko, M.E., Zh. Prikl. Khim., 2013, vol. 86, no. 2, pp. 183–190.

    Google Scholar 

  33. Cataldo, F., Int. J. Astrobio, 2004, vol. 3, no. 3, pp. 237–246.

    Article  CAS  Google Scholar 

  34. Casari, C.S., Russo, V., Bassi, A.L., et al., Appl. Phys. Lett., 2007, vol. 90, no. 1, pp. 013111–01311.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kharlamov.

Additional information

Original Russian Text © A.I. Kharlamov, G.A. Kharlamova, M.E. Bondarenko, 2013, published in Zhurnal Prikladnoi Khimii, 2013, Vol. 86, No. 8, pp. 1198–1207.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharlamov, A.I., Kharlamova, G.A. & Bondarenko, M.E. New low-temperature method for joint synthesis of C60 fullerene and new carbon molecules in the form of C3-C15 and quasi-fullerenes C48, C42, C40 . Russ J Appl Chem 86, 1174–1183 (2013). https://doi.org/10.1134/S1070427213080053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427213080053

Keywords

Navigation