Russian Journal of Applied Chemistry

, Volume 85, Issue 11, pp 1732–1739 | Cite as

Molecular properties of poly(2-deoxy-2-methacryloylamino-D-glucose) in aqueous solvents of various compositions

  • N. P. YevlampievaEmail author
  • O. V. Nazarova
  • A. P. Khurchak
  • E. I. Ryumtsev
  • E. F. Panarin
Macromolecular Compounds and Polymeric Materials


Six samples of poly(2-deoxy-2-methacryloylamino-D-glucose) were prepared by free-radical polymerization of the monomer. The molecular properties of the homologous series obtained were studied in three solvents, 0.2 M NaCl, 0.1 M Na2SO4, and salt-free water, by viscometry and static and dynamic light scattering. The Mark-Kuhn-Houwink relationships were obtained. The poly(vinyl saccharide) studied, despite the presence of bulky pendant substituents, is a typical flexible-chain polymer with the Kuhn segment length of 20 ± 3 Å. In aqueous salt systems, poly(2-deoxy-2-methacryloylamino-D-glucose), which is not a polyelectrolyte, nevertheless demonstrates the dependence of the hydrodynamic size of the molecules on the solvent composition. The SO 4 2− ions make the polymer molecules more compact, whereas Cl ions present in aqueous solution lead to its expanding. Salt additions affect the thermodynamic quality of the polymer-solvent system.


Dynamic Light Scattering Coarse Particle Intrinsic Viscosity Molecular Property Homologous Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yaszemski, J., Hasirtci, V., and Lewandrowski, K.-U., Tissue Engineering and Novel Delivery Systems, New York: Dekker, 2004.Google Scholar
  2. 2.
    Korzhikov, V., Diederichs, S., Nazarova, O., et al., J. Appl. Polym. Sci., 2008, vol. 108, no. 4, pp. 2386–2397.CrossRefGoogle Scholar
  3. 3.
    Liu, S., Maheshwari, R., and Kliick, K.L., Macromolecules, 2009, vol. 42, no. 1, pp. 3–13.CrossRefGoogle Scholar
  4. 4.
    Garcia-Martin, M.G., Jimenez-Hidalgo, C., Al-Kass, S.S.J., et al., Polymer, 2000, vol. 41, pp. 821–826.CrossRefGoogle Scholar
  5. 5.
    Narumi, A. and Kakuchi, T., Polym. J., 2008, vol. 40, pp. 383–397.CrossRefGoogle Scholar
  6. 6.
    Panarin, E.F., Ivanova, N.P., Belokhvostova, A.T., and Potapenkova, L.V., Khim.-Farm. Zh., 2002, vol. 36, no. 4, pp. 19–22.Google Scholar
  7. 7.
    Klien, H. and Herzog, D., Makromol. Chem., 1987, vol. 188, no. 6, pp. 1217–1232.CrossRefGoogle Scholar
  8. 8.
    Korzhikov, V.A., Filippov, A.P., Vlasova, E.N., et al., Zh. Prikl. Khim., 2008, vol. 81, no. 8, pp. 1311–1319.Google Scholar
  9. 9.
    Pavlov, G., Ivanova, N., Korneeva, E., et al., J. Carbohydr. Chem., 1996, vol. 15, no. 4, pp. 419–433.CrossRefGoogle Scholar
  10. 10.
    Tsvetkov V.N. Rigid-Chain Polymers: Hydrodynamic and Optical Properties in Solution, New York: Plenum: Consultants Bureau, 1989.Google Scholar
  11. 11.
    Berne, B.J. and Pecora, R., Dynamic Light Scattering, New York: Wiley, 1976.Google Scholar
  12. 12.
    Eskin, V.E., Rasseyanie sveta rastvorami polimerov i svoistva makromolekul (Light Scattering by Polymer Solutions and Properties of Macromolecules), Leningrad: Nauka, 1986.Google Scholar
  13. 13.
  14. 14.
    Lipmanovich, E.A. and Ivleva, E.M., Vysokomol. Soedin., Ser. A, 2010, vol. 52, no. 6, pp. 1010–1017.Google Scholar
  15. 15.
    Gray, H.B., Bloomfield, V.A., and Hearst, J.E., J. Chem. Phys., 1967, vol. 46, no. 4, p. 1493.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. P. Yevlampieva
    • 1
    Email author
  • O. V. Nazarova
    • 2
  • A. P. Khurchak
    • 1
  • E. I. Ryumtsev
    • 1
  • E. F. Panarin
    • 2
  1. 1.Fock Research Institute of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations