Skip to main content
Log in

Empirical method for calculation of thermodynamic potentials of organic substances

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A method for establishing relationships between various physicochemical properties of organic substances is developed. The method is based on the concept of linear deviations of physicochemical parameters calculated by additive techniques from experimentally determined values for some broad groups covering various classes of organic substances. The deviations from linearity are analyzed for the example of thermodynamic potentials of 1055 organic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez, P., Parra-Mouchet, J., and Contreras, R.R., J. Chil. Chem. Soc., 2004, vol. 49, no. 1, pp. 30–56.

    Article  Google Scholar 

  2. Eshermann, B., Martin, B., Horn, A.H.C., and Clark, T., J. Mol. Model., 2003, vol. 9, pp. 342–347.

    Article  CAS  Google Scholar 

  3. Hammett, L.R., Physical Organic Chemistry. Reaction, Rates, Equilibria and Mechanisms, Second Edition, New York: McGraw-Hill, 1970.

    Google Scholar 

  4. Pal’m, V.A., Osnovy kolichestvennoi teorii khimicheskikh reaktsii (Fundamentals of the Quantitative Theory of Chemical Reactions), Leningrad: Khimiya, 1977.

    Google Scholar 

  5. Cherkasov, A.R., Galkin, V.I., and Cherkasov, R.A., Usp. Khim., 1996, vol. 65, no. 8, pp. 695–711.

    CAS  Google Scholar 

  6. Cherkasov, A.R., Ionsson, M., Galkin, V.I., and Cherkasov, R.A., Usp. Khim., 2001, vol. 70, no. 1, pp. 3–27.

    Google Scholar 

  7. Tupitsyn, I.F., Zh. Obshch. Khim., 2004, vol. 74, no. 1, pp. 25–38.

    Google Scholar 

  8. Tupitsyn, I.F., Zh. Obshch. Khim., 2004, vol. 74, no. 2, pp. 202–213.

    Google Scholar 

  9. Tupitsyn, I.F., Zh. Obshch. Khim., 2004, vol. 74, no. 7, pp. 1105–1118.

    Google Scholar 

  10. Trushkov, L.E., Chuvylkin, N.D., Koz’min, A.S., and Zefirov, N.S., Russ. Chem. Bull., 1995, vol. 44, no. 5, pp. 777–800.

    Article  Google Scholar 

  11. Egorochkin, A.N., Voronkov, M.G., Zderenova, O.V., and Skobeleva, S.E., Izv. Akad. Nauk, Ser. Khim., 2000, vol. 1, pp. 253–260.

    Google Scholar 

  12. Egorochkin, A.N., Voronkov, M.G., Zderenova, O.V., and Skobeleva, S.E., Izv. Akad. Nauk, Ser. Khim., 2001, no. 1, pp. 41–47.

  13. Egorochkin, A.N., Voronkov, M.G., Skobeleva, S.E., and Zderenova, O.V., Izv. Akad. Nauk, Ser. Khim., 2001, no. 1, pp. 34–40.

  14. Amend, J.P. and Hegelson, H.C., Geochim. Cosmochim. Acta, 1997, vol. 61, no. 1, pp. 11–46.

    Article  CAS  Google Scholar 

  15. Ladbury, J.E. and Chowdhry, B.Z., Chem. Biol., 1996, vol. 3, no. 10, pp. 791–801.

    Article  CAS  Google Scholar 

  16. Hinz, H.J. and Schwarz, F.P., Pure Appl. Chem., 2001, vol. 73, no. 4, pp. 745–759.

    CAS  Google Scholar 

  17. Eads, C.D., J. Phys. Chem., Ser. B, 1999, vol. 103, no. 28, pp. 5869–5880.

    Article  CAS  Google Scholar 

  18. Horak, J., Chem. Listy, 1999, vol. 93, no. 10, pp. 616–622.

    CAS  Google Scholar 

  19. Smith, D.W., J. Chem. Soc., Faraday Trans., 1998, vol. 94, pp. 3087–3901.

    Article  CAS  Google Scholar 

  20. Mutelet, F. and Rogalski, M., Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 432–436.

    Article  CAS  Google Scholar 

  21. Scalabrin, G., Grigiante, M., Cristofoli, G., and Piazza, L., Int. J. Refrigeration, 2003, vol. 26, no. 1, pp. 35–50.

    Article  CAS  Google Scholar 

  22. Chouai, A., Laugier, S., and Richon, D., Fluid Phase Equilibr., 2002, vol. 199, nos. 1–2, pp. 53–62

    Article  CAS  Google Scholar 

  23. Zevatskii, Yu.E. and Lysova, S.S., Zh. Prikl. Khim., 2006, vol. 79, no. 6, pp. 978–985.

    Google Scholar 

  24. de Visser, S.P., Phys. Chem. Chem. Phys., 1999, vol. 1, pp. 749–753.

    Article  Google Scholar 

  25. Standard Thermodynamic Properties of Chemical Substances, http://www.update.uu.se/:_jolkkonen/pdf/CRC_TD.pdf.

  26. Cox, J.D., Wagman, D.D., and Medvedev, V.A., CODATA Key Values for Thermodynamics, New York: Hemisphere, 1989. p. 1.

    Google Scholar 

  27. http://upiterburg.newchem.ru/technic/tables.rtf.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.E. Zevatskii, D.V. Samoilov, 2007, published in Zhurnal Prikladnoi Khimii, 2007, Vol. 80, No. 2, pp. 230–235.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zevatskii, Y.E., Samoilov, D.V. Empirical method for calculation of thermodynamic potentials of organic substances. Russ J Appl Chem 80, 230–235 (2007). https://doi.org/10.1134/S1070427207020127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427207020127

Keywords

Navigation