Skip to main content
Log in

Hydrogen Production from Natural Gas in Laser Plasma: Chemistry, International Energy Policy, and Economic Model

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

To solve such global problems as climate stabilization and reducing greenhouse gas luminescences requires an integrated approach, including a strategic analysis of the problem and the development of criteria for selecting proposed solutions, a natural scientific research on the possibilities and ways to implement the assigned tasks, as well as an economic justification for the feasibility of implementing the developed measures. The present publication is an attempt to apply this approach to the problem of hydrogen energy via proposing the production of hydrogen by pyrolysis of natural gas in laser plasma as one of the ways to its solution. Therewith, the main attention is focused on the chemical processes that occur in laser plasma, as well as on the nature of the transformations that occur in the solid pyrolysis product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Global Hydrogen Review, Paris: IEA, 2022.

  2. Wappler, M., Unguder, D., Lu, X., Ohlmeyer, H., Teschke, H., and Lueke, W., Int. J. Hydrogen Energy, 2022, vol. 47, no. 79, p. 33551. https://doi.org/10.1016/j.ijhydene.2022.07.253

    Article  CAS  Google Scholar 

  3. Green Hydrogen in China: A Roadmap for Progress, in White Paper, Cologny/Geneva: World Economic Forum, 2023, p. 51.

  4. Rasporyazhenie Pravitel’stva Rossiiskoi Federatsii ot 9 iyunya 2020 g. № 1523-r (Ob Energeticheskoi strategii Rossiiskoi Federatsii na period do 2035 g.) (Order of the Government of the Russian Federation of June 9, 2020 no. 1523-r (On the Energy Strategy of the Russian Federation for the Period Until 2035)), 2020.

  5. Rasporyazhenie Pravitel’stva RF ot 5 avgusta 2021 g. № 2162-r (Ob utverzhdenii Kontseptsii razvitiya vodorodnoi energetiki v RF) (Order of the Government of the Russian Federation of August 5, 2021 no. 2162-r (On Approval of the Concept for the Development of Hydrogen Energy in the Russian Federation)), 2021.

  6. Opportunities for Hydrogen Production with CCUS in China, Paris: IEA. 2022. https://www.iea.org/reports/opportunities-for-hydrogen-production-with-ccus-in-china

  7. Meld, S., Energy for Work – Long-Term Value Creation from Norwegian Energy Resources, Oslo: Ministry of Oil and Energy, Ministry of Climate and the Environment, 2021.

  8. The Government’s Hydrogen Strategy – on the Way to a Low-Luminescence Society, Oslo: Ministry of Oil and Energy, 2019.

  9. Glaz’ev, S.Yu., Za gorizontom kontsa istorii (Beyond the Horizon of the End of History), Moscow: Propsekt, 2021.

  10. Fan, Z., Sheerazi, H., Bhardwaj, A., Corbeau, A.-S., Longobardi, K., Castañeda, A., Merz, A.-K., Woodall, C.M., Agrawal, M., Orozco-Sanchez, S., and Friedmann, J., Hydrogen Leakage: A Potential Risk for the Hydrogen Economy, New York: Columbia Univ, 2022. https://www.energypolicy.columbia.edu/wp-content/uploads/2022/07/HydrogenLeakageRegulations_CGEP_Commentary_063022.pdf

  11. Sánchez-Bastardo, N., Schlögl, R., and Ruland, H., Ind. Eng. Chem. Res., 2021, vol. 60, no. 32, p. 11855. https://doi.org/10.1021/acs.iecr.1c01679

    Article  CAS  Google Scholar 

  12. Production of Hydrogen from Renewable Resources, Fang, Z., Smith, R. L., and Qi, X, Eds., Dordrecht: Springer Netherlands, 2015, vol. 5.

  13. Parfenova, V. E., Nikitchenko, N.V., Pimenova, A.A., Kuz’min, A.E., Kulikova, M.V., Chupichev, O.B., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, no. 5, p. 625. https://doi.org/10.1134/S1070427220050018

    Article  Google Scholar 

  14. Scapinello, M., Delikonstantis, E., and Stefanidis, G.D., Chem. Eng. Process. Process Intensif., 2017, vol. 117, p. 120. https://doi.org/10.1016/j.cep.2017.03.024

    Article  CAS  Google Scholar 

  15. Feng, J., Sun, X., Li, Zh., Hao, X., Fan, M., Ning, P., and Li, K., Adv. Sci., 2022, vol. 9, no. 34, 2203221. https://doi.org/10.1002/advs.202203221

  16. Chen, G., Tu, X., Homm, G., and Weidenkaff, A., Nat. Rev. Mater., 2022, vol. 7, no. 5, p. 333. https://doi.org/10.1038/s41578-022-00439-8

    Article  Google Scholar 

  17. Wnukowski, M., Energies, 2023, vol. 16, no. 18, p. 6441. https://doi.org/10.3390/en16186441

    Article  CAS  Google Scholar 

  18. Lee, D. H., Kang, H., Kim, Y., Song, H., Lee, H., Choi, J., Kim, K.-T., and Songet, Y.-H., Fuel Process. Technol., 2023, vol. 247, p. 107761. https://doi.org/10.1016/j.fuproc.2023.107761

    Article  CAS  Google Scholar 

  19. Kuznetsov, D.L., Uvarin, V.V., and Filatov, I.E., J. Phys. D. Appl. Phys., 2021, vol. 54, no. 43, p. 435203. https://doi.org/10.1088/1361-6463/ac17b2

    Article  CAS  Google Scholar 

  20. Bi, S., Yuan, C., Liu, C., Cheng, J., Wang, W., and Cai, Y., Appl. Sci., 2021, vol. 11, no. 9, p. 3938. https://doi.org/10.3390/app11093938

    Article  CAS  Google Scholar 

  21. Thomas, J., Maia, L., Ledemi, Y., Messaddeq, Y., and Kashyap, R., Oxide Electronics, Ray, K., Ed., New York: Wiley, 2021, p. 353.

  22. Spreafico, C., Russo, D., and Degl, R., J. Intell. Manuf., 2022, vol. 33, no. 2, p. 353. https://doi.org/10.1007/s10845-021-01809-9

    Article  Google Scholar 

  23. Baymler, I.V., Barmina, E.V., Simakin, A.V., and Shafeev, G.A., Quant. Electron., 2018, vol. 48, no. 8, p. 738. https://doi.org/10.1070/QEL16648

    Article  CAS  Google Scholar 

  24. Stadnichenko, O.A., Snytnikov, V. N., Snytnikov, V.N., and Masyuk, N.S., Chem. Eng. Res. Des., 2016, vol. 109, p. 405. https://doi.org/10.1016/j.cherd.2016.02.008

    Article  CAS  Google Scholar 

  25. Rezaei, F., Gorbanev, Yu., Chys, M., Nikiforov, A., Van Hulle, S.W.H., Cos, P., Bogaerts, A., and De Geyter, N., Plasma Process. Polym., 2018, vol. 15, no. 6. https://doi.org/10.1002/ppap.201700226

  26. Hamann, S., Rond, C., Pipa, A.V., Wartel, M., Lombardi, G., Gicquel, A., and Röpckeet, J., Plasma Sources Sci. Technol., 2014, vol. 23, no. 4, p. 045015. https://doi.org/10.1088/0963-0252/23/4/045015

    Article  CAS  Google Scholar 

  27. Abdelli-Messaci, S., Kerdja, T., Bendib, A., and Malek, S., Spectrochim. Acta B, 2005, vol. 60, nos. 7–8, p. 955. https://doi.org/10.1016/j.sab.2005.07.002

    Article  CAS  Google Scholar 

  28. Morgan, N.N. and ElSabbagh, M., Plasma Chem. Plasma Process, 2017, vol. 37, no. 5, p. 1375 https://doi.org/10.1007/s11090-017-9829-3

    Article  CAS  Google Scholar 

  29. Díez, N., Śliwak, A., Gryglewicz, S., Grzyb, B., and Gryglewicz, G., RSC Adv., 2015, vol. 5, no. 100, p. 81831. https://doi.org/10.1039/C5RA14461B

  30. Tarasevich, B.N., IK spektry osnovnykh klassov organicheskikh soedinenii. Spravochnik (IR Spectra of the Main Classes of Organic Compounds. Reference), Moscow: Mosk. Gos. Univ., 2012.

  31. Purevsuren, P., Batbileg, S., Kuznetsova, L.I., Batkhishig, D., Namkhaynorov, M., Battsetseg, M., Narangirel, G., and Kuznetsov, P.N., Khim. Tverd. Topliva, 2019, no. 2, p. 3. https://doi.org/10.1134/S0023117719020105

    Article  Google Scholar 

  32. Zhou, H., Zeng, X., Li, A., Zhou, W., Tang, L., Hu, W., Fan, Q., Meng, X., Deng, H., Duan, L., Li, Y., Deng, Z., Hong, X., and Xiao, Yu., Nat. Commun., 2020, vol. 11, no. 1, p. 6183. https://doi.org/10.1038/s41467-020-19945-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, D., He, Z., Zhao, Y., Yang, Y., Shi, W., Li, X., and Maet, H., J. Am. Chem. Soc., 2021, vol. 143, no. 41, p. 17136 https://doi.org/10.1021/jacs.1c07711

    Article  CAS  PubMed  Google Scholar 

  34. Povolotskiy, A.V., Sheremet, T.I., Tveryanovich, Y.S., Glas. Phys. Chem., 2022, vol. 48, no. 6, p. 537. https://doi.org/10.1134/S1087659622600855

    Article  CAS  Google Scholar 

  35. Waite, J.H.Jr., Young, D.T., Cravens, T.E. , Coates, A.J., Crary, F.J.., Magee, B., and Westlakeet, J., Science, 2007, vol. 316, no. 5826, p. 870. https://doi.org/10.1126/science.1139727

    Article  CAS  PubMed  Google Scholar 

  36. Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T. A., and Williams, M.W., Icarus, 1984, vol. 60, no. 1, p. 127. https://doi.org/10.1016/0019-1035(84)90142-8

    Article  CAS  Google Scholar 

  37. Jorio, A., Jorio, A., Souza Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Pimenta, M.A., Hafner, J.H., Lieber, C.M., and Saitoet, R., Phys. Rev. B, 2002, vol. 65, no. 15, p. 155412. https://doi.org/10.1103/PhysRevB.65.155412

    Article  CAS  Google Scholar 

  38. Kuzmany, H., Pfeiffer, R., Salk, N., and Günther, B., Carbon N.Y., 2004, vol. 42, nos. 5–6, p. 911. https://doi.org/10.1016/j.carbon.2003.12.045

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation and the Government of St. Petersburg (project no. 22-23-20038). The measurements were carried out in the resource Centers of the Science Park of St. Petersburg State University (Center for Optical and Laser Materials Research, Interdisciplinary Resource Center for Nanotechnology, Center for X-ray Diffraction Studies, Center for Physical Methods for Surface Research, and Center for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Tver’yanovich.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

To the 300th Anniversary of the founding of St. Petersburg University

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tver’yanovich, Y.S., Povolotskii, A.V., Vetrova, M.A. et al. Hydrogen Production from Natural Gas in Laser Plasma: Chemistry, International Energy Policy, and Economic Model. Russ J Gen Chem 94 (Suppl 1), S227–S242 (2024). https://doi.org/10.1134/S1070363224140226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224140226

Keywords:

Navigation