Skip to main content
Log in

Construction Materials and Products for Protection Against Thermal, Electromagnetic, and Chemical Influences (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The review presents scientific elaborations in creating materials for microwave, electronics, and heat-resistant coating applications characterized by a high degree of thermal protection and thermal stability, the ability to absorb and reflect radiation of various nature, high strength characteristics, and practical absence of impurities. The concept of digital materials science as a tool for obtaining materials and products with specified properties, including additive technologies, is analyzed. The technological possibilities of obtaining porous products and devices for the implementation of directional adsorption processes using various forms of energy are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

REFERENCES

  1. Junkers, H., German Patent 0 DE310040, 1915.

  2. Dean, H.B., US Patent 1389294, 1921.

  3. He, M. and Hu, W., Mater. Des., 2008, vol. 29, no. 3, p. 709. https://doi.org/10.1016/j.matdes.2007.03.003

    Article  CAS  Google Scholar 

  4. Gorev, Yu.A. and Rivkind, V.N., Ross. Khim. Zh., 2009, vol. 53, no. 4, p. 19.

    CAS  Google Scholar 

  5. Feigenbaum, Yu.M., Butushin, S.V., Bozhevalov, D.G., and Sokolov, Yu.S., Nauch. Vest. GosNII GA, 2015, vol. 7, no. 318.

  6. Vlasenko, F.S. and Raskutin, A.E., Trudy VIAM, 2013, vol. 8, p. 3.

  7. Kiyanenko, E.A., Zenitova, L.A., and Kuz'min, M.G., Vest. Tekhnol. Univ., 2015, vol. 18, no. 19, p. 60.

    Google Scholar 

  8. Stocchi, A., Colabella, L., Cisilino, A., and Álvarez, V., Mater. Des., 2014, vol. 55, p. 394. https://doi.org/10.1016/j.matdes.2013.09.054

    Article  CAS  Google Scholar 

  9. Kamalieva, R.N. and Charkviani, R.V., Procedia Eng., 2017, vol. 185, p. 190. https://doi.org/10.1016/j.proeng.2017.03.337

    Article  Google Scholar 

  10. Pehlivan, L. and Baykasoğlu, C., Compos., Part B: Eng., 2019, vol. 162, p. 653. https://doi.org/10.1016/j.compositesb.2019.01.044

    Article  CAS  Google Scholar 

  11. Sugiyama, K., Matsuzaki, R., Ueda, M., Todoroki, A., and Hirano, Y., Compos., Part A: Appl. Sci. Manuf., 2018, vol. 113, no. 7, p. 114. https://doi.org/10.1016/j.compositesa.2018.07.029

    Article  CAS  Google Scholar 

  12. Sitidze, Yu. and Sato, Kh., Ferrity (Ferrites), Moscow: Mir, 1964.

  13. Lempke, M., Hoppe, W., Tolksdorf, W., and Welz, F., Mikrowellenmagazin Heft, 1981, p. 286.

  14. Nicholson, D.B., Matreci, R.J., and Levernie, M.J., Hewlett-Packard J., 1990, vol. 41, no. 5, p. 49.

    Google Scholar 

  15. Häßner, M., Vinnik, D.A., and Niewa, R., Ceram. Int., 2021, vol. 47, no. 4, p. 5341. https://doi.org/10.1016/j.ceramint.2020.10.115

    Article  CAS  Google Scholar 

  16. Kuleshov, G.Ye., Dotsenko, O.A., and Kochetkova, O.A., Polzunov Vest., 2012, vol. 2, p. 163.

    Google Scholar 

  17. Fulco, A.P.P., Melo, J.D.D., Paskocimas, C.A., De Medeiros, S.N., MacHado, F.L.A., and Rodrigues, A.R., NDT E Int., 2016, vol. 77, p. 42. https://doi.org/10.1016/j.ndteint.2015.10.002

    Article  CAS  Google Scholar 

  18. https://ckbrm.ru

  19. http://www.viam.ru

  20. https://www.tdkrfsolutions.tdk.com

  21. Krenkel, W. and Georges, T.J., Ceramic Matrix Composites: Materials, Modeling and Technology. Chapter 23. Ceramic Matrix Composites for Friction Applications, New Jersey: John Wiley, 2014, p. 647. https://doi.org/10.1002/9781118832998.ch23

  22. Fatchurrohman, N., Iskandar, I., Suraya, S., and Johan, K., Appl. Mech. Mater., 2014, vol. 695, p. 32. https://doi.org/10.4028/www.scientific.net/amm.695.32

    Article  Google Scholar 

  23. Mavhungu, S T., Akinlabi, E.T., Onitiri, M.A., and Varachia, F.M., Proc. Manufact., 2017, vol. 7, p. 178. https://doi.org/10.1016/j.promfg.2016.12.045

    Article  Google Scholar 

  24. Uyanna, O. and Najafi, H., Acta Astronaut., 2020, vol. 176, p. 341. https://doi.org/10.1016/j.actaastro.2020.06.047

    Article  Google Scholar 

  25. Reznik, S.V. and Prosuntsov, P.V., IOP Conf. Ser. Mater. Sci. Eng., 2020, vol. 971, no. 5. https://doi.org/10.1088/1757-899X/971/5/052047

  26. Sauder, C., Ceramic Matrix Composites: Materials, Modeling and Technology, Chapter 22. Ceramic Matrix Composites: Nuclear Applications, New Jersey: John Wiley, 2014, p. 609. https://doi.org/10.1002/9781118832998.ch22

  27. Glass, D.E., 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference, 2008, NASA Langley Research Center, Hampton, p. 1.

  28. Faitelson, E.A., Korkhov, V.P., Kamenskii, M.G., and Pudnik, V.V., Machanics Compos. Mater., 1994, vol. 30, no. 4.

  29. Bahramian, A.R. and Kokabi, M., Polymer Green Flame Retardants, Chapter 15. Polymer Nanocomposites as Ablative Materials, Elsevier, 2014, p. 461. https://doi.org/10.1016/B978-0-444-53808-6.00015-9

  30. Gavalda, D.O., Gonzalo, G.L., Zhirong, L., and Dragos, A., Int. J. Mach. Tools Manuf., 2019, vol. 139, p. 24. https://doi.org/10.1016/j.ijmachtools.2019.01.003

    Article  Google Scholar 

  31. Fortes, M.A. and Ferreira, P.J., Materiais Dois Mil. IST Press, 2003.

  32. Lino Alves, F.J., Baptista, A.M., and Marques, A.T., Advanced Composite Materials for Aerospace Engineering. Chapter 3. Metal and Ceramic Matrix Composites in Aerospace Engineering, Elsevier Ltd., 2016, p. 59.

  33. https://www.makeitfrom.com/material-properties/AM60A-AM60A-F-M10600-Magnesium

  34. Speer, W. and Es-Said, O.S., Eng. Fail. Anal., 2004, vol. 11, no. 6, p. 895. https://doi.org/10.1016/j.ijmachtools.2019.01.003

    Article  CAS  Google Scholar 

  35. https://www.aerospacemetals.com/titanium-ti-6al-4v-ams-4911.html

  36. Miracle, D.B., Compos. Sci. Technol., 2005, vol. 65, p. 2526. https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  CAS  Google Scholar 

  37. Daniel, B.M. and Steven, L.D., Volume 21 Composites, ASM Handbook, ASM International Handbook Committee, 2001, p. 2605.

  38. Balinova, Yu.A., Grashchenkov, D.V., Shavnev, A.A., Babashov, V.G., Chaynikova, A.S., Kurbatkina, E.I., and Bol’shakova, A.N., Vestn. Vostochno-Kazakhstanskogo Konts. “Almaz-Antey”, 2020, vol. 2, p. 83.

    Google Scholar 

  39. Narottam, P.B. and Jacques, L., Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties. Ceramic-Matrix Composites, Wiley, 2003, vol. 2, p. 417. https://doi.org/10.1016/B978-012654640-8/50042-0

  40. Clauß, B., Ceramic Matrix Composites. Chapter 1. Fibers for Ceramic Matrix Composites, Weinheim: WILEY-VCH, 2008, p. 1.

  41. Chandra, B.K., Jatinder, K., and Singh, H., Int. J. Res. Mech. Engineering & Tech., 2014, vol. 4, no. 2, p. 27.

    Google Scholar 

  42. https://www.substech.com/dokuwiki/doku.php?id=liquid_state_fabrication_

  43. Bai, X., Ding, G., Zhang, K., Wang, W., Zhou, N., Fang, D., and He, R., Open Ceram., 2021, vol. 5. https://doi.org/10.1016/j.oceram.2020.100046

  44. Chamberlainm, A.L., Fahrenholtzm, W.G., and Hilmasm, G.E., J. Am. Ceram. Soc., 2006, vol. 89, no. 2, p. 450. https://doi.org/10.1111/j.1551-2916.2005.00739.x

    Article  CAS  Google Scholar 

  45. Wang, H.L., Wang, C.A., Chen, D.L., Xu, H.L., Lu, H.X., Zhang, R., and Feng, L., Front. Mater. Sci. China, 2010, vol. 4, no. 3, p. 276. https://doi.org/10.1007/s11706-010-0091-3

    Article  Google Scholar 

  46. Sun, C.N., J. Am. Ceram. Soc., 2008, vol. 91, no. 5, p. 1729. https://doi.org/10.1016/j.ceramint.2021.12.199

    Article  CAS  Google Scholar 

  47. Madziara, S., Najbert, M., Wozniak, M., Kubiak, P., Ozuna, G., De La Fuente, P., and Jozwiak, P., Mech. Agric. Conserv. Res., 2015, vol. 61, no. 11, p. 23.

    Google Scholar 

  48. Solmaz, M.Y. anf Topkaya, T., Appl. Sci., 2020, vol. 10, no. 20, p. 1. https://doi.org/10.3390/app10207262

    Article  CAS  Google Scholar 

  49. Wei, X., Li, D., and Xiong, J., Compos. Sci. Technol., 2019, vol. 184. https://doi.org/10.1016/j.compscitech.2019.107878

  50. https://www.nauticexpo.ru/prod/polymer-technologies/product-39326-298590.html

  51. http://www.buran.ru/htm/tersaf4.htm

  52. Padture, N.P., Nat. Mater. Nature Publishing Group, 2016, vol. 15, no. 8, p. 804. https://doi.org/10.1038/nmat4687

    Article  CAS  Google Scholar 

  53. Sychov, M., Chekuryaev, A., and Mjakin, S., Fractal Characterization of Microstructure of Materials and Correlation with Their Properties on the Basis of Digital Materials Science Concept, Chapter in Fractal Analysis Applications and Updates, Intech Open Publishers, 2023. https://doi.org/10.5772/intechopen.1002602

  54. Sychov, M.M., Digital Materials Science, The 19th International Conference on Global Research and Education, Gomel, Belarus, 2021, p. 98

  55. Chekuryaev, A.G., Sychov, M.M., Perevislov, S.N., and Ulanov, V.N., Ceramics, 2023, no. 6, p. 1067. https://doi.org/10.3390/ceramics6020063

    Article  CAS  Google Scholar 

  56. Bormashenko, E., Frenkel, M., Vilk, A., and Nosonovsky, M., Entropy, 2018, no. 20, p. 956. https://doi.org/10.3390/e20120956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sychov, M., Eruzin, A., Semenova, A., Katashev, P., Mjakin, S., Zhukov, M., Aglikov, A., Nosonovsky, M., and Skorb, E., Langmuir, 2023. https://doi.org/10.1021/acs.langmuir.3c01290

  58. Zhukov, A.S., Shakirov, I.V., Kuznetcov, P.A., Sychev, M.M., Dyachenko, S.V., and Nefedova, L.A., Gas Atomization of X6CrNiTi18-10 Stainless Steel Powder for Selective Laser Melting Technology, Materials Science Forum V, 2021, vol. 1040, p. 112.

  59. Zhukov, A.S., Shakirov, I.V., Kuznetcov, P.A., Sychev, M.M., Dyachenko, S.V., and Nefedova, L.A., Comparison of the Properties of Additive Materials Obtained from Sprayed Powders of Steels of Various Metallurgical Production Method, Proc. AIP Conference, 2021, vol. 2402, p. 060021. https://doi.org/10.1063/5.0071253

    Article  CAS  Google Scholar 

  60. Sychov, M.M., Digital Materials Science: Numerical Characterization of Steel Microstructure, International Conference on Nanotechnology for Sustainable Living & Environment, ICON-NSLE 2022, Pilani, India, 2022, p. xxxi.

  61. Sychov, M.M., Chekuryaev, A.G., Bogdanov, S.P., and Kuznetsov, P.A., Digital Materials Science: Numerical Characterization of Steel Microstructure, in Research and Education: Traditions and Innovations, Khakhomov, S., Semchenko, I., Demidenko, O., Kovalenko, D., Eds., INTER-ACADEMIA, 2021, Lecture Notes in Networks and Systems, vol. 422. Springer, Singapore. https://doi.org/10.1007/978-981-19-0379-3_15

  62. Nefedova, L.A., Ivkov, V.I., Sychov, M.M., Diachenko, S.V., and Gravit, M.V., Materials Today: Proceedings, 2019, vol. 30, p. 520.

    Google Scholar 

  63. Samonin, V.V., Podvyaznikov, M.L., and Spiridonova, E.A., Sorbtsionnyye Tekhnologii dlya Zashchity Lyudey, Tekhniki i Okruzhayushchey Sredy, St. Petersburg: Nauka, 2021.

  64. Boroznin, S.V., Mod. Electron. Mater., 2022, vol. 8, no. 1, p. 23. https://doi.org/10.17073/1609-3577-2022-1-64-91

    Article  CAS  Google Scholar 

  65. Pakhnutova, E.A., Slizhov, Y.G., and Faustova, Z.V., J. Phys. Chem. A, 2021, vol. 95, no. 7, p. 1470. https://doi.org/10.31857/S0044453721060200

    Article  CAS  Google Scholar 

  66. Samonin, V.V., Fedorov, Yu.S., Spiridonova, E.A., Podvyaznikov, M.L., Khrylova, E.D., and Yakovleva, E.V., Izv. SPbGTI(TU), 2021, no. 59 (84), p. 51. https://doi.org/10.36807/1998-9849-2021-59-85-51-56

    Article  Google Scholar 

  67. Utashev, E.I., Abdikamalova, A.B., and Eshmetov, I.D., Universum: Khimiya i Biologiya, 2020, no. 6 (72), p. 52.

    Article  Google Scholar 

  68. Fursikov, P.V., Sleptsova, A.M., Mozhzhukhin, S.A., Arbuzov, A.A., Fokin, V.N., Fokina, E.E., Tarasov, B.P., and Khodos, I.I., J. Phys. Chem. A, 2020, vol. 94, no. 5, p. 1011. https://doi.org/10.31857/S0044453720050076

    Article  CAS  Google Scholar 

  69. Yanilkin, V.V. and Krivenko, A.G., Elektrokhimiya nanosistem (Electrochemistry of Nanosystems), Moscow: RAN, 2021.

  70. Samonin, V.V. and Slutsker, E.M., Zh. Fiz. Khim., 2005, vol. 79, no. 1, p. 100.

    Google Scholar 

  71. Krachkovskaya, T.M., Mel’nikov, L.A., Sakhadzhi, G.V., Ponomarev, A.N., and Emel’yanov, A.S., J. Radio Electronics, 2017, no. 11, p. 17

    Google Scholar 

  72. Vedernikov, Yu.N., Fedotov, S.A., Smirnov, A.V., Avatinyan, G.A., Parshikov, Yu.G., Ponomarev, A.N., and Kulagin, Yu.A., Russ. J. Gen. Chem., 2022, vol. 92, no. 6, p. 1137. https://doi.org/10.1134/s1070363222060275

    Article  CAS  Google Scholar 

  73. Spiridonova, E.A., Khrylova, E.D., Samonin, V.V., Podvyaznikov, M.L., Yakovleva, A.V., and Kicha, M.A., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 2, p. 335. https://doi.org/10.1134/S0044185619020281

    Article  CAS  Google Scholar 

  74. Spiridonova, E.A., Samonin, V.V., Podvyaznikov, M.L., and Morozova, V.Y., Russ. J. Appl. Chem., 2020, vol. 93, no. 5, p. 691. https://doi.org/10.1134/S1070427220050092

    Article  CAS  Google Scholar 

  75. Spiridonova, E.A., Rotko, V.O., Samonin, V.V., and Podvyaznikov, M.L., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, no. 1, p. 45. https://doi.org/10.1134/S2070205121010184

    Article  CAS  Google Scholar 

  76. Gotsiridze, A.V., Kuznetsov, P.A., Prostorova, A.O., and Tret'yakov, V.P., Sovremennoe Mashinostroenie. Nauka i Obrazovanie, 2020, no. 9, p. 440. https://doi.org/10.1872/MMF-2020-30

    Article  Google Scholar 

  77. Gladyshev, N.F., Gladysheva, T.V., and Dvoretskiy, S.I., Khim. Bezt’, 2017, vol. 1, no. 1, p. 62. https://doi.org/10.25514/CHS.2017.1.11432

    Article  Google Scholar 

  78. Wu, K.L., Nistratov, A.V., and Klushin, V.N., Usp. Khim. Khim. Tekhnol., 2017, vol. 31, no. 9 (190), p. 51.

    Google Scholar 

  79. Kuznetsov, M.V., Innovats. Nauka, 2021, no. 10-1, p. 9.

    Google Scholar 

  80. Skaryukin, A.S., Nistratov, A.V., Klushin, V.N., and Kalinina, D.D., Usp. Khim. Khim. Tekhnol., 2017, vol. 31, no. 9 (190), p. 48.

    Google Scholar 

  81. Solovei, V.N., Samonin, V.V., Spiridonova, E.A., and Podvyaznikov, M.L., Sorbts. Chromatograph Proc., 2019, vol. 19, no. 2, p. 217. https://doi.org/10.17308/sorpchrom.2019.19/741

    Article  CAS  Google Scholar 

  82. Eikhenwal’d, A.A., Teoreticheskaya fizika: Elektromagnitnoye pole (Theoretical Physics: Electromagnetic Field), Мoscow: URSS, 2021.

  83. Rogov, V.A., Chudakov, A.D., and Ushomirskaya, L.A., Technology of Construction Materials. Treatment with Concentrated Energy Flows, Moscow: Yurait, 2023.

  84. Shipko, M.N., Sibirev, A.L., Stepovich, M.A., Usoltseva, N.V., Smirnova, A.I., and Maslennikova, O.M., Bull. Russ. Acad. Sci. Phys., 2018, vol. 82, no. 8, p. 956. https://doi.org/10.1134/S0367676518080367

    Article  CAS  Google Scholar 

  85. Boldyrev, V.V., Avvakumov, E.G., and Boldyreva, E.V., Fundamentals of Mechanical Activation, Mechanosynthesis and Mechanochemical Technologies, Novosibirsk: Sib. Otdelenie RAN, 2009.

  86. Yakimova, N.I., Mjakin, S.V., Vasiljeva, I.V., and Samonin, V.V., Activation of Adsorbents, Electron Beam Modification of Solids, New York: Nova Science Publishers, 2009, Chapter 3.3, p. 49.

  87. Samonin, V.V., Podvyaznikov, M.L., Chentsov, M.S., Spiridonova, E.A., and Kiseleva, V.L., Russ. J. Appl. Chem., 2013., vol. 86, no. 3, p. 366. https://doi.org/10.1134/S1070427213030130

    Article  CAS  Google Scholar 

  88. Samonin, V.V., Podvyaznikov, M.L., Chentsov, M.S., Spiridonova, E.A., and Kiseleva, V.L., Russ. J. Appl. Chem., 2012, vol. 85, no. 8, p. 1176. https://doi.org/10.1134/S107042721208006X

    Article  CAS  Google Scholar 

  89. Samonin, V.V., Podvyaznikov, M.L., Shevkina, A.Yu., Chentsov, M.S., and Ivachev, Yu.Yu., Izv. SPbGTI(TU), 2007, no. 1 (27), p. 63.

    Google Scholar 

  90. Kotova, D.L., Krysanova, T.A., Novikova, L.A., Bel’chinskaya, L.I., and Davydova, E.G., Sorbts. Chromatograph. Processes, 2020, vol., 20, no. 2, p. 166. https://doi.org/10.17308/sorpchrom.2020.20/2771

    Article  CAS  Google Scholar 

  91. Bel’chinskaya, L.I., Khodosova, N.A., and Novikova, L.A., Sorbts. Chromatograph. Processes, 2017, vol. 17, no. 5, p. 781

    Google Scholar 

  92. Kurnosov, A.S., Yakovleva, M.A., Vasilyeva, A.A., and Gorshenev, V.N., Abstracts of Papers, XX Annual Youth Conference with International Participation of the Institute of Biochemistry and Chemical Physics RAS-Universities and the IV Symposium “Modern materials Science”, Moscow, 2020, p. 93

  93. Gorshenev, V.N., Dontsov, A.E., and Yakovleva, M.A., Khim. Bezt’, 2021, vol. 5, no. 2, p. 78. https://doi.org/10.25514/CHS.2021.2.20004

    Article  Google Scholar 

  94. Bel'chinskaya, L.I., Khodosova, N.A., Novikova, L.A., Anisimov, M.V., and Petukhova, G.A., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, p. 793. https://doi.org/10.1134/S2070205117040025

    Article  CAS  Google Scholar 

  95. Samonin, V.V., Nikonova, V.Yu., and Spiridonova, E.A., Phys. Chem. A, 2007, vol. 81, no. 8, p. 1276. https://doi.org/10.1134/S0036024407080183

    Article  CAS  Google Scholar 

  96. Samonin, V.V., Podvyaznikov, M.L., Spiridonova, E.A., and Golubev, A.G., Izv. Vuzov: Tekhnol. Legkoi Promti, 2011, vol. 12, no. 2, p. 81.

    Google Scholar 

  97. Podvyaznikov, M.L., Samonin, V.V., Shevkina, A.Yu., Chentsov, M.S., and Ivachev, Yu.Yu., Theor. Found. Chem. Eng., 2010, vol. 44, no. 4, p. 485. https://doi.org/10.1134/S0040579510040214

    Article  CAS  Google Scholar 

Download references

Funding

The determination of numerical characteristics of the materials microstructure was supported by the Russian Science Foundation grant 21-73-30019

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Samonin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

To the 300th Anniversary of the founding of St. Petersburg University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podvyaznikov, M.L., Samonin, V.V., Spiridonova, E.A. et al. Construction Materials and Products for Protection Against Thermal, Electromagnetic, and Chemical Influences (A Review). Russ J Gen Chem 94 (Suppl 1), S205–S226 (2024). https://doi.org/10.1134/S1070363224140214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224140214

Keywords:

Navigation