Skip to main content
Log in

Excess Enthalpies and Heat of Esterification Reaction in Acetic Acid–n-Butanol–n-Butyl Acetate–Water System at 313.15 K

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The excess enthalpies of the acetic acid–n-butanol–n-butyl acetate–water system in chemically equilibrium states were measured at 313.15 K and atmospheric pressure. Over the entire range of mole fractions, the system displayed positive excess enthalpy values. The heat of the esterification reaction was determined based on the mixture’s heat effects and was calculated to be –4.7±0.3 kJ/mol. The correlation of the data was carried out using NRTL model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Krishnamoorthy, V., Dhanasekaran, R., Rana, D., Saravanan, S., and Rajesh Kumar, B., Energy Conversion and Management, 2018, vol. 156, p. 337. https://doi.org/10.1016/j.enconman.2017.10.087

    Article  CAS  Google Scholar 

  2. Wang, Y., Chen, Z., Haefner, M., Guo, S., Di Reda, N., Ma, Y., Wang, Y., Avedisian, C.T., Fuel, 2021, vol. 304, p. 121324. https://doi.org/10.1016/j.fuel.2021.121324

    Article  CAS  Google Scholar 

  3. Cooney, M., Young, G., and Nagle, N., Sep. Purif. Rev., 2009, vol. 38, no. 4, p. 291. https://doi.org/10.1080/15422110903327919

    Article  CAS  Google Scholar 

  4. Mascarenhas, N.O., Pereira, M.A., Pires, C.A.M., Simonelli, G., and Santos L.C.L., Biomass Conv. Bioref., 2022. https://doi.org/10.1007/s13399-022-03102-y

  5. Ningaraju, C., Yatish, K.V., Prakash, R.M., Sakar, M., and Balakrishna, R.G., Biomass Conv. Bioref., 2021, vol. 13, no. 9, p. 8351. https://doi.org/10.1007/s13399-021-01992-y

    Article  CAS  Google Scholar 

  6. Mani, Y., Devaraj, T., Devaraj, K., Abdur Rawoof, S.A., and Subramanian, S., Environ. Sci. Pollut. Res., 2020, vol. 27, no. 29, p. 36450. https://doi.org/10.1007/s11356-020-09626-y

    Article  CAS  Google Scholar 

  7. Shuit, S.H. and Tan, S.H., Bioenerg. Res., 2015, vol. 8, no. 2, p. 605. https://doi.org/10.1007/s12155-014-9545-2

    Article  CAS  Google Scholar 

  8. Malik, S. and Sharma, V.K., Korean J. Chem. Eng., 2023, vol. 40, no. 11, p. 2581. https://doi.org/10.1007/s11814-023-1484-1

    Article  CAS  Google Scholar 

  9. Feng, W., Yan, S., Duan, X., and Wang, T., Catal. Lett., 2023, vol. 153, no. 11, p. 3297. https://doi.org/10.1007/s10562-022-04232-8

    Article  CAS  Google Scholar 

  10. Xu, Y. and Avedisian, C.T., Energy Fuels, 2015, vol. 29, no. 5, p. 3467. https://doi.org/10.1021/acs.energyfuels.5b00158

    Article  CAS  Google Scholar 

  11. Puli, D. and Ravi Kumar, P., Biofuels, 2015, vol. 6, nos. 1–2, p. 71. https://doi.org/10.1080/17597269.2015.1050642

    Article  CAS  Google Scholar 

  12. Mack, J.H., Schuler, D., Butt, R.H., and Dibble, R.W., Appl. Energy, 2016, vol. 165, p. 612. https://doi.org/10.1016/j.apenergy.2015.12.105

    Article  CAS  Google Scholar 

  13. Atmanli, A., Fuel, 2016, vol. 176, p. 209. https://doi.org/10.1016/j.fuel.2016.02.076

    Article  CAS  Google Scholar 

  14. Atmanli, A., Ileri, E., Yuksel, B., and Yilmaz, N., Appl. Energy, 2015, vol. 145, p. 155. https://doi.org/10.1016/j.apenergy.2015.01.071

    Article  CAS  Google Scholar 

  15. Martins, M.G., Da Silva Arouche, T., Neto, A.F.G., Da Cruz, J.N., Da Costa, F.L.P., Fernandes, L.L., De Carvalho Junior, R., Da Silva Costa, J., and De Jesus Chaves Neto, A., J. Mol. Model., 2021, vol. 27, no. 3, p. 80. https://doi.org/10.1007/s00894-021-04681-9

    Article  CAS  PubMed  Google Scholar 

  16. Golikova, A., Shasherina, A., Anufrikov, Y., Misikov, G., Toikka, M., Zvereva, I., and Toikka, A., Int. J. Mol. Sci., 2023, vol. 24, no. 6, p. 5137. https://doi.org/10.3390/ijms24065137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haase, R. and Pehlke, M., Z. Naturforsch. A, 1977, vol. 32, p. 507. https://doi.org/10.1515/zna-1977-0523

    Article  Google Scholar 

  18. Golikova, A.D., Candidate Dissert. (Chem. Sci.), St. Peterburg, 2021.

  19. Barbosa, D. and Doherty, M.F., Proc. R. Soc. Lond. (A), 1987, vol. 413, no. 1845, p. 459. https://doi.org/10.1098/rspa.1987.0126

    Article  CAS  Google Scholar 

  20. Barbosa, D. and Doherty, M.F., Chem. Eng. Sci., 1988, vol. 43, no. 3, p. 529. https://doi.org/10.1016/0009-2509(88)87014-3

    Article  CAS  Google Scholar 

  21. Zharov, V., Russ. J. Phys. Chem. (A), 1970, no. 8, p. 1967.

    Google Scholar 

  22. Toikka, M., Smirnov, A., Trofimova, M., Golikova, A., Prikhodko, I., Samarov, A., and Toikka, A., J. Chem. Eng. Data, 2023, vol. 68, no. 5, p. 1145. https://doi.org/10.1021/acs.jced.3c00009

    Article  CAS  Google Scholar 

  23. Esquível, M.M. and Bernardo-Gil, M.G., Fluid Phase Equilib., 1990, vol. 57, no. 3, p. 307. https://doi.org/10.1016/0378-3812(90)85129-X

    Article  Google Scholar 

  24. Samarov, A., Toikka, M., and Toikka, A., Fluid Phase Equilib., 2015, vol. 385, p. 129. https://doi.org/10.1016/j.fluid.2014.11.004

    Article  CAS  Google Scholar 

  25. Renon, H. and Prausnitz, J.M., AIChE J., 1968, vol. 14, no. 1, p. 135. https://doi.org/10.1002/aic.690140124

    Article  CAS  Google Scholar 

  26. NIST Standard Reference Database 103b, 2010.

  27. Steele, W.V., Chirico, R.D., Cowell, A.B., Knipmeyer, S.E., and Nguyen, A., J. Chem. Eng. Data, 1997, vol. 42, p. 1053. https://doi.org/10.1021/je970099y

    Article  CAS  Google Scholar 

  28. Pedley, J.B., Naylor, R.D., and Kirby, S.P., Thermochemical Data of Organic Compounds, Dordrecht: Springer Netherlands, 1986. https://doi.org/10.1007/978-94-009-4099-4

  29. Chase, M., NIST-JANAF Thermochemical Tables, Washington: American Chemical Society, 1998.

  30. Golikova, A., Tsvetov, N., Anufrikov, Y., Toikka, M., Zvereva, I., and Toikka, A., J. Therm. Anal. Calorim., 2018, vol. 134, no. 1, p. 835. https://doi.org/10.1007/s10973-018-7010-8

    Article  CAS  Google Scholar 

  31. Letyanina, I., Tsvetov, N., Zvereva, I., Samarov, A., and Toikka, A., Fluid Phase Equilib., 2014, vol. 381, p. 77. https://doi.org/10.1016/j.fluid.2014.08.022

    Article  CAS  Google Scholar 

  32. Golikova, A., Tsvetov, N., Samarov, A., Toikka, M., Zvereva, I., Trofimova, M., and Toikka, A., J. Therm. Anal. Calorim., 2019. https://doi.org/10.1007/s10973-019-08488-y

Download references

ACKNOWLEDGMENTS

The authors acknowledge the Resource Centre of St. Petersburg University. The investigations were carried out using the equipment of the Resource Centre of Thermogravimetric and Calorimetric Research.

Funding

This work was financially supported by the Russian Science Foundation (grant no. 22-73-00159, https://rscf.ru/project/22-73-00159/). All calculations were carried out with financial support of the Russian Science Foundation (grant no. 21-13-00038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Golikova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

To the 300th Anniversary of the founding of St. Petersburg University

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golikova, A.D., Anufrikov, Y.A., Shasherina, A.Y. et al. Excess Enthalpies and Heat of Esterification Reaction in Acetic Acid–n-Butanol–n-Butyl Acetate–Water System at 313.15 K. Russ J Gen Chem 94 (Suppl 1), S177–S183 (2024). https://doi.org/10.1134/S1070363224140184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224140184

Keywords:

Navigation