Skip to main content
Log in

Stability of Molecular Complexes of Iodine and Iodine Monochloride with Nitrogen-Containing Donors

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical computations at M06-2X/def2-TZVPD level of theory were employed to compute structural and thermodynamic properties of gaseous donor-acceptor complexes IX·LB [X = I, Cl; LB = trimethylamine, triethylamine, pyridine, 2-aminopyridine, 4,4′-bipyridine, pyrazine, 1,2-bis(4-pyridyl)ethylene, 1,2-bis(4-pyridyl)ethane]. Iodine monochloride is a stronger Lewis acid compared to the molecular iodine. With respect to homogeneous gas phase dissociation into components, the complex of ICl with triethylamine is the most stable and the complex of I2 with pyrazine is the least stable. It is shown that dissociation enthalpies do not correlate with proton affinity of the Lewis base, but there is a good correlation between dissociation enthalpies and I–X bond lengthening upon complex formation. This allows to estimate the stability of the complex based on its structural data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Ding, X.-H., Chang, Y.-Zh., Ou, Ch.-J., Lin, J.-Y., Xie, L.-H., and Huang, W., Natl. Sci. Rev., 2020, vol. 7, p. 1906. https://doi.org/10.1093/nsr/nwaa170

  2. Kaasik, M. and Kanger, T., Front. Chem., 2020, vol. 8, p. 599064. https://doi.org/10.3389/fchem.2020.599064

  3. Rogachev, A.Yu., and Hoffmann, R., J. Am. Chem. Soc., 2013, vol. 135, p. 3262. https://doi.org/10.1021/ja312584u

  4. Montgomery, C.A. and Murphy, G.K., Beilstein J. Org. Chem., 2023, vol. 19, p. 1171. https://doi.org/10.3762/bjoc.19.86

  5. Timoshkin, A.Y., Chem. Eur. J., 2024, vol. 30, article e202302457. https://doi.org/10.1002/chem.202302457

  6. Shcherbina, N.A., Kazakov, I.V., Lisovenko, A.S., Kryukova, M.A., Krasnova, I.S., Bodensteiner, M., and Timoshkin, A.Y., Mendeleev Commun., vol. 32, p. 74. https://doi.org/10.1016/j.mencom.2022.01.024

  7. Davydova, E.I., Sevastianova, T.N., Suvorov, A.V., and Timoshkin, A.Y., Coord. Chem. Rev., 2010, vol. 254, p. 2031. https://doi.org/10.1016/j.ccr.2010.04.001

    Article  CAS  Google Scholar 

  8. Ananthavel, S.P. and Manoharan, M., Chem. Phys., 2001, vol. 269, p. 49. https://doi.org/10.1016/S0301-0104(01)00363-9

  9. Marshall, W.G., Jones, R.H., Knight, K.S, Clews, J., Darton, R.J., Miller, W., Coles, S.J., and Pitak, M.B., Cryst. Eng. Comm., 2017, vol. 19, p. 5194. https://doi.org/10.1039/C7CE00869D

  10. Hassel, O. and Hope, H., Acta Chem. Scand., 1960, vol. 14, p. 391. https://doi.org/10.3891/acta.chem.scand.14-0391

    Article  CAS  Google Scholar 

  11. Strømme, K.O., Acta Chem. Scand., 1959, vol. 13, p. 268. https://doi.org/10.3891/acta.chem.scand.13-0268

  12. Toikka, M. and Haukka M., Acta Crystallogr. (E), 2015, vol. 71, p. o463. https://doi.org/10.1107/S2056989015010518

  13. Jones, R.H., Knight, K.S., Marshall, W.G., Clews, J., Darton, R.J., Pyatt, D., Coles, S.J., Horton, P.N., Cryst. Eng. Comm., 2014, vol. 16, p. 23. https://doi.org/10.1039/C3CE41909F

  14. Bailey, R.D., Buchanan, M.L., and Pennington, W.T., Acta Crystallogr. (C), 1992, vol. 48, p. 2259. https://doi.org/10.1107/S0108270192007662

  15. Bailey, R.D., Drake, G.W., Grabarczyk, M., Hanks, T.W., Hook, L.L., and Pennington, W.T., J. Chem. Soc. Perkin trans., 1997, vol. 2, p. 2773. https://doi.org/10.1039/a700203c

  16. Leopold, K.R., Canagaratna, M., and Phillips, J.A., Acc. Chem. Res., 1997, vol. 30, p. 57. https://doi.org/10.1021/ar950115l

  17. Timoshkin, A.Y., Bodensteiner, M., Sevastianova, T.N., Lisovenko, A.S., Davydova, E.I., Scheer, M., Graßl, C., and Butlak, A.V., Inorg. Chem., 2012, vol. 51, p. 11602. https://doi.org/10.1021/ic301507c

  18. Hunter, E.P. and Lias, S.G., J. Phys. Chem. Ref. Data, 1998, vol. 27, p. 413. https://doi.org/10.1063/1.556018

  19. Shen, J. and Brodbelt, J., J. Mass Spectrom., 1998, vol. 33, p. 118. https://doi.org/10.1002/(SICI)1096-9888(199802)33:

  20. Davydova, E.I., Doinikov, D.A., Kazakov, I.V., Krasnova, I.S., Sevast’yanova, T.N., Suvorov, A.V., and Timoshkin, A.Y., Russ. J. Gen. Chem., 2019, vol. 89, p. 1069. https://doi.org/10.1134/S1070363219060021

  21. Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, p. 215. https://doi.org/10.1007/s00214-007-0310-x

  22. Rappoport, D. and Furche F., J. Chem. Phys., 2010, vol. 133, p. 134105. https://doi.org/10.1063/1.3484283

  23. Pritchard, B.P., Altarawy, D., Didier, B., Gibsom, T.D., and Windus, T.L., J. Chem. Inf. Model., 2019, vol. 59, p. 4814. https://doi.org/10.1021/acs.jcim.9b00725

  24. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., Gaussian 16, Revision A.03, Gaussian, Inc.: Wallingford, CT. 2016.

  25. Boys, S. and Bernardi, F., Mol. Phys., 1970, vol. 19, p. 553.

  26. Clark, T.A., Handbook of Computational Chemistry, New York: Wiley, 1985.

Download references

Funding

The work was carried out with the financial support of the Russian Science Foundation (RSF grant 23-13-00314) using the equipment of the Computing Center of St. Petersburg University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Timoshkin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

To the 300th Anniversary of the founding of St. Petersburg University

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomogaeva, A.V., Lisovenko, A.S. & Timoshkin, A.Y. Stability of Molecular Complexes of Iodine and Iodine Monochloride with Nitrogen-Containing Donors. Russ J Gen Chem 94 (Suppl 1), S40–S46 (2024). https://doi.org/10.1134/S1070363224140068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224140068

Keywords:

Navigation