Skip to main content
Log in

Synthesis, Anticancer Activity, and Computational Studies of New Pyrazole Derivatives

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

new pyrazole derivatives were synthesized through a cyclization reaction of chalcones derivatives with hydrazine hydrate under acidic catalysis and characterization by different techniques. The MTT assay was used to examine the cytotoxic activity of the produced compounds against the tumor cell lines MCF-7 and MDA-MB-231. Morphological screening images by using the IC50 values of 2-[3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl]quinoline at various concentrations to the cancer cell lines MCF-7 and MDA-MB-231 were done. Molecular docking for the most active compound inside the active sites of the (PDB: 1M17) was done. The geometry optimization and reactivity descriptors, such as energy band gap (ΔE), chemical potential (μ), electronegativity (χ), chemical hardness (η), chemical softness (S), electrophilicity (ω), and least unoccupied molecular orbital (LUMO), were also analyzed using the DFT calculation performed using DFT/B3LYP/6-311+G(d,p). Additionally, a thorough in silico prediction of the compounds physicochemical ADME profile was completed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Shorouk, S., Mukhtar, N.M.M., Ashraf, S.H., Taghrid, S.H., Hamdi, M.H., and Fatma, M.S., Egypt. J. Chem., 2022, vol. 65, no. 8, p. 379. https://doi.org/10.21608/ejchem.2022.112735.5125

    Article  Google Scholar 

  2. Dhaliwal, J.S., Moshawih, S., Goh, K.W., Loy, M.J., Hossain, Md.S., Hermansyah, A., Kotra, V., Kifli, N., Goh, H.P., Dhaliwal, S.K.S., Yassin, H., and Ming, L.C., Molecules, 2022, vol. 27, no. 20, p. 7062. https://doi.org/10.3390/molecules27207062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neamah, H.F., Al-Shawi, A.A.A., and Shihab, N.L., J. Basrah Res. (Sci.), 2019, vol. 45(1A), p. 14. https://www.iasj.net/iasj/issue/9923

    Google Scholar 

  4. Kawkab, A.H., Nezar, L.S., and Bahjat, A.S., Egypt. J. Chem., 2021, vol. 64, no. 5, p. 2297. https://doi.org/10.21608/EJCHEM.2021.57012.3233

    Article  Google Scholar 

  5. Chebanov, V.A., Desenko, S.M., and Gurley, T.W., Azaheterocycles Based on α,β-Unsaturated Carbonyls, 2008. https://doi.org/10.1007/978-3-540-68367-4

  6. Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C., and Miao, Z., Chem. Rev., 2017, vol. 117, no. 12, p. 7762. https://doi.org/10.1021/acs.chemrev.7b00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shalaby, M.A., Rizk, S.A., and Fahim, A.M., Org. Biomol. Chem., 2023, vol. 21, p. 5317. https://doi.org/10.1039/D3OB00792H

    Article  CAS  PubMed  Google Scholar 

  8. Nayak, Y.N., Gaonkar, S.L., and Sabu, M., J. Het. Chem., 2023, vol. 60, no. 8, p. 1301. https://doi.org/10.1002/jhet.4617

    Article  CAS  Google Scholar 

  9. Tukur, A.R., Habila, J.D., Ayo, R.G.-O., and Lyun, O.R.A., J. Chem. Rev., 2022, vol. 4, no. 2, p. 100. https://doi.org/10.22034/jcr.2022.326696.1143

    Article  CAS  Google Scholar 

  10. Zhang, Y., Wu, C., Zhang, N., Fan, R., Ye, Y., and Xu, J., Int. J. Mol. Sci., 2023, vol. 24, p. 12724. https://doi.org/10.3390/ijms241612724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alsayari, A., Asiri, Y.I., Muhsinah, A.B., and Hassan, M.Z., J. Oncol., 2021, vol. 2021, p. 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277517/

    Article  Google Scholar 

  12. Abrigach, F. and Touzani, R., Med. Chem., 2016, vol. 6, p. 292. https://doi.org/10.4172/2161-0444.1000359

    Article  CAS  Google Scholar 

  13. Benazzouz-Touami, A., Chouh, A., Halit, S., Terrachet-Bouaziz, S., Makhloufi-Chebli, M., Ighil-Ahriz, K., Silva, A.M.S., J. Mol. Struct., 2022, vol. 1249, p. 131591. https://doi.org/10.1016/j.molstruc.2021.131591

    Article  CAS  Google Scholar 

  14. Haider, K., Shafeeque, M., Yahya, S., and Yar, M.S., Eur. J. Med. Chem., 2022, vol. 5, p. 100042. https://doi.org/10.1016/j.ejmcr.2022.100042

  15. Yadav, C.S., Azad, I., Khan, A.R., Nasibullah, M., Ahmad, N., Hansda, D., Ali, S.N., Shrivastav, K., Akil, M., and Lohani, M.B., Results in Chem., 2024, vol. 7, p. 101326. https://doi.org/10.1016/j.rechem.2024.101326

  16. Lévai, A., Chem. Heterocycl. Compd., 1997, vol. 33, p. 647. https://doi.org/10.1007/BF02291794

    Article  Google Scholar 

  17. Hassani, I.A., Rouzi, K., Assila, H., Karrouchi, K., and Ansar, M., Reactions, 2023, vol. 4, p. 478. https://doi.org/10.3390/reactions4030029

    Article  CAS  Google Scholar 

  18. Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y.N., Al-aizari, F.A., and Ansar, M., Molecules, 2018, vol. 23, p. 134. https://doi.org/10.3390/molecules23010134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hussein, K.A., Al-Shuhaib, Z., and Ismael, S.M.H., Trop. J. Nat. Prod. Res., 2023, vol. 7, no. 11, p. 5270. https://doi.org/10.26538/tjnpr/v7i11.36

    Article  CAS  Google Scholar 

  20. Al Shuhaib, Z., Hussein, K.A., and Ismael, S.M., Russ. J. Gen. Chem, 2023, vol. 93, no. 5, p. 1171. https://doi.org/10.1134/S1070363223050183

    Article  Google Scholar 

  21. Al-Wahaibi, L.H., Abou-Zied, H.A., Beshr, E.A.M., Youssif, B.G.M., Hayallah, A.M., and Abdel-Aziz, M., Int. J. Mol. Sci., 2023, vol. 24, p. 9104. https://doi.org/10.3390/ijms24109104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kohler, E.P., and Chadwell, H.M., Org. Synth. Coll., 1922, vol. 1, p. 78. https://doi.org/10.15227/orgsyn.002.0001

    Article  Google Scholar 

  23. AL-Hazimi, H.M.A., and Al-Alshaikh, M.A., J. Saudi Chem. Soc., 2010, vol. 14, no. 4, p. 373. https://doi.org/10.1016/j.jscs.2010.04.009

    Article  CAS  Google Scholar 

  24. Kumar, A.D., Prabhudeva, M.G., Bharath, S., Kumara, K., Lokanath, N.K., Kumar, K.A., Bioorg. Chem., 2018, vol. 80, p. 444. https://doi.org/10.1016/j.bioorg.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  25. Patel, V.M. and Desai, K.R., ARKIVOC, 2004, vol. 2004, no. 1, p. 123. https://doi.org/10.3998/ark.5550190.0005.111

    Article  Google Scholar 

  26. Ingle, A.V., Doshi, A.G., and Raut, A.W., Orient. J. Chem., 2010, vol. 26, no. 4, p. 1517.

    CAS  Google Scholar 

  27. Yang, B., Zhou, J., Wang, F., Hu, X.-W., and Shi, Y., Bioorg. Chem., 2021, vol. 114, p. 105134. https://doi.org/10.1016/j.bioorg.2021.105134

    Article  CAS  PubMed  Google Scholar 

  28. Yang, B., Zhang, B., Zhao, Q., Li, J., and Shi, Y., Molecules, 2022, vol. 27, no. 8, p. 2404. https://doi.org/10.3390/molecules27082404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Emam, S.M., El Rayes, S.M., Ali, I.A.I., Soliman, H.A., and Nafie, M.S., BMC Chemistry, 2023, vol. 17, p. 90. https://doi.org/10.1186/s13065-023-00995-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tran, V., Kim, R., Maertens, M., Hartung, T., and Maertens, A., Front. Artif. Intell., 2021, vol. 4, p. 674370. https://doi.org/10.3389/frai.2021.674370

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., J. Comput. Chem., 2009, vol. 16, p. 2785. https://doi.org/10.1002/jcc.21256

    Article  CAS  Google Scholar 

  32. Gaussian 16, Revision C.01, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li. X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D. J., Gaussian, Inc., Wallingford CT, 2016.

  33. Saracoglu, M., Kandemirli, F., Amin, M., Vurdu, C.D., Cavus, M.S., and Sayner, G., 3rd International Conference on Computation for Science and Technology (ICCST-3), 2015. https://doi.org/10.2991/iccst-15.2015.29

  34. Lefi, N., Kazachenko, A.S., Raja, M., Issaoui, N., and Kazachenko, A.S., Molecules, 2023, vol. 28, p. 2669. https://doi.org/10.3390/molecules28062669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Djafri, A., Perveen, F., Benhalima, N., Khelloul, N., Rahmani, R., Djafri, A., Chouaih, A., Kanoun, M.B., and Goumri-Said, S., Heliyon, 2020, vol. 6, p. e05754. https://doi.org/10.1016/j.heliyon.2020.e05754

  36. İslamoğlu, F., Erdoğan, N., and Hacıfazlıoğlu, E., Int. J. Biol. Chem., 2023, vol. 16, no. 2, p. 129. https://doi.org/10.26577/IJBCh2023v16i2a14

    Article  Google Scholar 

  37. Yassine, K., Farid, A., El Bekaye, Y., Mohamed, El.K., and Rachid, T., Heliyon, 2020, vol. 6, no. 1, p. E03185. https://doi.org/10.1016/j.heliyon.2020.e03185

  38. Chandrakumar, K.R.S., and Sourav, P., Int. J. Mol. Sci., 2002, vol. 3, p. 324. https://doi.org/10.3390/i3040324

    Article  CAS  Google Scholar 

  39. Lakshmanan, S., MJM, 2020, vol. S, no. 2, p. 2309. https://doi.org/10.26637/MJM0S20/0594

    Article  Google Scholar 

  40. Adlani, L., Zarrouk, A.M., Benzbiria, N., Titi, A., Benhiba, F., Warad, I., Timoudan, N., Kaichouh, G., Bellaouchou, A., Touzani, R., Zarrok, H., and Oudda, H., Anal. Bioanal. Electrochem., 2023, vol. 15, no. 11, p. 967. https://doi.org/10.22034/abec.2023.709114

    Article  CAS  Google Scholar 

  41. Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, p. 42717. https://doi.org/10.1038/srep42717

  42. Daina, A. and Zoete, V., Chem. Med. Chem., 2016, vol. 11, p. 1117. https://doi.org/10.1002/cmdc.201600182

    Article  CAS  PubMed  Google Scholar 

  43. Beck, T.C., Springs, K., Morningstar, J.E., Mills, C., Stoddard, A., Guo, L., Moore, K., Gensemer, C., Biggs, R., Petrucci, T., Kwon, J., Stayer, K., Koren, N., Dunne, J., Fulmer, D., Vohra, A., Mai, L., Dooley, S., Weninger, J., Peterson, Y., Woster, P., Dix, T.A., and Norris, R.A., Molecules, 2022, vol. 27, p. 3678. https://doi.org/10.3390/molecules27123678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. En-Nahli, F., Hajji, H., Ouabane, M., Ajana, M.A., Sekatte, C., Lakhlifi, T., and Bouachrine, M., Arab. J. Chem., 2023, vol. 16, p. 105262. https://doi.org/10.1016/j.arabjc.2023.105262

    Article  CAS  Google Scholar 

  45. Najar, A.M., Eswayah, A., Moftah, M.B., Ruwida Omar, M.K., Bobtaina, E., Najwa, M., Elhisadi, T.A., Tahani, A., Tawati, S.M., Khalifa, A.M.M., Abdou, A., and DowAltome, A.E., J. Med. Chem. Sci., 2023, vol. 6, p. 2056. https://doi.org/10.26655/JMCHEMSCI.2023.9.14

    Article  CAS  Google Scholar 

  46. Mosmann, T., J. Immunol. Methods, 1983, vol. 65, no. 1, p. 55. https://doi.org/10.1016/0022-1759(83)90303-4

  47. Berridge, M.V., Herst, P.M., and Tan, A.S., Biotechnol. Annu. Rev., 2005, vol. 11, p. 127. https://doi.org/10.1016/S1387-2656(05)11004-7

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express gratitude to the University of Basra, Iraq, for providing the 1H and 13C NMR spectra.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Hussein.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairulah, AE., Shuhaib, Z.A., Alharis, R.A. et al. Synthesis, Anticancer Activity, and Computational Studies of New Pyrazole Derivatives. Russ J Gen Chem 94, 719–728 (2024). https://doi.org/10.1134/S107036322403023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322403023X

Keywords:

Navigation