Skip to main content
Log in

Computational Studies of Copper(II) Complexes Derived from N-Cyclohexyl-3-methoxysalicylideneimine and N-Cyclohexyl-3-ethoxysalicylideneimine

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Copper(II) complexes [Cu(LI)2] and [Cu(LII)2] (HLI = N-cyclohexyl-3-methoxysalicylideneimine, HLII = N-cyclohexyl-3-ethoxysalicylideneimine) were investigated using computational methods. It was previously found that [Cu(LI)2] is a planar molecule with two cyclohexyl groups oriented on the opposite sites of the planar part of the molecule, whereas complex [Cu(LII)2] is a bent molecule with two cyclohexyl groups oriented on the convex part of the molecule. Global reactivity descriptors, nonlinear optical properties and molecular electrostatic potential surfaces were computed for both structures. It was revealed that the molecular electrostatic potential surface of [Cu(LI)2] is symmetric due to a centrosymmetric structure of the complex, whereas for [Cu(LII)2], due to a bent structure, the same surface differs significantly for the convex and concave parts. Nucleophilic and electrophilic centers were also identified. Besides, potential anti-corrosion properties of both complexes were estimated for a series of metals. The evaluation of corrosion inhibitory properties of the complexes showed that the most efficient electron charge transfer was established for Ni and Co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Schiff, H., Justus Liebigs Ann. Chem., 1864, vol. 131, no. 1, p. 118. https://doi.org/10.1002/jlac.18641310113

    Article  Google Scholar 

  2. Nagar, S., Raizada, S., and Tripathee, N., Results Chem., 2023, vol. 6, Art. 101153. https://doi.org/10.1016/j.rechem.2023.101153

  3. Sinn, E. and Harris, C.M., Coord. Chem. Rev., 1969, vol. 4, no. 4. p. 391. https://doi.org/10.1016/S0010-8545(00)80080-6

    Article  CAS  Google Scholar 

  4. Garnovskii, A.D., and Vasil’chenko, I.S., Russ. Chem. Rev., 2002, vol. 71, no. 11, p. 943. https://doi.org/10.1070/RC2002v071n11ABEH000759

    Article  CAS  Google Scholar 

  5. Liu, X., Manzur, C., Novoa, N., Celedón, S., Carillo, D., and Hamon, J.-R., Coord. Chem. Rev., 2018, vol. 357, p. 144. https://doi.org/10.1016/j.ccr.2017.11.030

    Article  CAS  Google Scholar 

  6. Pessoa, J.C. and Correia, I., Coord. Chem. Rev., 2019, vol. 388, p. 227. https://doi.org/10.1016/j.ccr.2019.02.035

    Article  CAS  Google Scholar 

  7. Liu, X. and Hamon, J.-R., Coord. Chem. Rev., 2019, vol. 389, p. 94. https://doi.org/10.1016/j.ccr.2019.03.010

    Article  CAS  Google Scholar 

  8. Freire, C., Nunes, M., Pereira, C., Fernandes, D.M., Peixoto, A.F., and Rocha, M., Coord. Chem. Rev., 2019, vol. 394, p. 104. https://doi.org/10.1016/j.ccr.2019.05.014

    Article  CAS  Google Scholar 

  9. Pervaiz, M., Sadiq, S., Sadiq, A., Younas, U., Ashraf, A., Saeed, Z., Zuber, M., and Adnan, A., Coord. Chem. Rev., 2021, vol. 447, Art. 214128. https://doi.org/10.1016/j.ccr.2021.214128

  10. Kaur, M., Kumar, S., Yusuf, M., Lee, J., Brown, R.J.C., Kim, K.-H., and Malik, A.K., Coord. Chem. Rev., 2021, vol. 449, Art. 214214. https://doi.org/10.1016/j.ccr.2021.214214

  11. Jamil, D.M., Al-Okbi, A.K., Al-Baghdadi, S.B., AlAmiery, A.A., Kadhim, A., Gaaz, T.S., Kadhum, A.A.H., and Mohamad, A.B., Chem. Cent. J., 2018, vol. 12, Art. 7. https://doi.org/10.1186/s13065-018-0376-7

  12. Verma, C. and Quraishi, M.A., Coord. Chem. Rev., 2021, vol. 446, Art. 214105. https://doi.org/10.1016/j.ccr.2021.214105

  13. Gece, G., Corros. Sci., 2008, vol. 50, no. 11, p. 2981. https://doi.org/10.1016/j.corsci.2008.08.043

    Article  CAS  Google Scholar 

  14. Ke, H. and Taylor, C.D., Corrosion, 2019, vol. 75, no 7, p. 708. https://doi.org/10.5006/3050

    Article  CAS  Google Scholar 

  15. Kokalj, A., Corros. Sci., 2021, vol. 193, Art. 109650. https://doi.org/10.1016/j.corsci.2021.109650

  16. Chauhan, D.S., Verma, C., and Quraishi, M.A., J. Mol. Struct., 2021, vol. 1227, Art. 129374. https://doi.org/10.1016/j.molstruc.2020.129374

  17. Safin, D.A., Robeyns, K., and Garcia, Y., CrystEngComm., 2012, vol. 14, p. 5523. https://doi.org/10.1039/C2CE25600B

    Article  CAS  Google Scholar 

  18. Safin, D.A., Robeyns, K., Babashkina, M.G., Filinchuk, Y., Rotaru, A., Jureschi, C., Mitoraj, M.P., Hooper, J., Brela, M., and Garcia, Y., CrystEngComm., 2016, vol. 18, p. 7249. https://doi.org/10.1039/C6CE00266H

    Article  CAS  Google Scholar 

  19. Shiryaev, A.A., Burkhanova, T.M., Mahmoudi, G., Babashkina, M.G., and Safin, D.A., J. Lumin., 2020, vol. 226, Art. 117454. https://doi.org/10.1016/j.jlumin.2020.117454

  20. Shapenova, D.S., Shiryaev, A.A., Bolte, M., Kukułka, M., Szczepanik, D.W., Hooper, J., Babashkina, M.G., Mahmoudi, G., Mitoraj, M.P., and Safin, D.A., Chem. Eur. J., 2020, vol. 26, no, 57, p. 12987. https://doi.org/10.1002/chem.202001551

    Article  CAS  PubMed  Google Scholar 

  21. Alkhimova, L.E., Babashkina, M.G., and Safin, D.A., Molecules, 2021, vol. 26, no. 11, Art. 3112. https://doi.org/10.3390/molecules26113112

  22. Safin, D.A., Babashkina, M.G., Bolte, M., Ptaszek, A.L., Kukułka, M., and Mitoraj, M.P., J. Lumin., 2021, vol. 238, Art. 118264. https://doi.org/10.1016/j.jlumin.2021.118264

  23. Babashkina, M.G., Panova, E.V., Alkhimova, L.E., and Safin, D.A., Polycycl. Aromat. Compd., 2023, vol. 43, no. 6, p. 5116. https://doi.org/10.1080/10406638.2022.2097281

    Article  CAS  Google Scholar 

  24. Panova, E.V., Voronina, J.K., and Safin, D.A., Pharmaceuticals, 2023, vol. 16, no. 2, Art. 286. https://doi.org/10.3390/ph16020286

  25. Obot, I.B., Macdonald, D.D., and Gasem, Z.M., Corros. Sci., 2015, vol. 99, p. 1. https://doi.org/10.1016/j.corsci.2015.01.037

    Article  CAS  Google Scholar 

  26. Goyal, M., Kumar, S., Bahadur, I., Verma, C., and Ebenso, E.E., J. Mol. Liq., 2018, vol. 256, p. 565. https://doi.org/10.1016/j.molliq.2018.02.045

    Article  CAS  Google Scholar 

  27. Harvey, T.J., Walsh, F.C., and Nahlé, A.H., J. Mol. Liq., 2018, vol. 266, p. 160. https://doi.org/10.1016/j.molliq.2018.06.014

    Article  CAS  Google Scholar 

  28. Michaelson, H.B., J. Appl. Phys., 1977, vol. 48, p. 4729. https://doi.org/10.1063/1.323539

    Article  CAS  Google Scholar 

  29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr. J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision D.01, 2013.

  30. Geerlings, P., De Proft, F., and Langenaeker, W., Chem. Phys., 2003, vol. 103. p. 1793. https://doi.org/10.1021/cr990029p

    Article  CAS  Google Scholar 

  31. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  32. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  33. Frisch, M.J., Pople, J.A., and Binkley, J.S., J. Chem. Phys., 1984, vol. 80, p. 3265. https://doi.org/10.1063/1.447079

    Article  CAS  Google Scholar 

  34. Dennington, R., Keith, T.A., and Millam, J.M., GaussView, Version 6.0, Semichem Inc., Shawnee Mission: Shawnee, Kansas, 2016.

Download references

ACKNOWLEDGMENTS

This work was partially carried out using the resources of the Research Resource Center “Natural Resource Management and Physico-Chemical Research” (University of Tyumen).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Safin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, E.V., Safin, D.A. Computational Studies of Copper(II) Complexes Derived from N-Cyclohexyl-3-methoxysalicylideneimine and N-Cyclohexyl-3-ethoxysalicylideneimine. Russ J Gen Chem 94, 703–710 (2024). https://doi.org/10.1134/S1070363224030216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224030216

Keywords:

Navigation