Skip to main content
Log in

Catalysts for Dimethyl Ether Reforming to Hydrogen (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen energy has been widely accepted as renewable and clean energy source. However, safety problems exist in the process of hydrogen energy transportation and storage. On-site hydrogen production has great potential to solve safety problems, and dimethyl ether (DME) is an excellent hydrogen carrier. There are four ways for hydrogen production from DME, and they are DME steam reforming, partial oxidation of DME, autothermal reforming of DME, and plasma reforming of DME, respectively. Catalysts are essential for the first three reactions and the last one could achieve the activation of DME just through election catalysis. To the best of our knowledge, a review of hydrogen production from DME has not been reported, which should be discussed systematically. In this review, the advantages and disadvantages of different DME reforming processes are discussed, and the progress of catalysts for the reforming processes as well as the effects of catalysts in the reactions are summarized. This paper also provides the rational design of highly efficient catalysts on DME in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Shahbaz, M., Wang, J., Dong, K., and Zhao, J., Renew. Sust. Energ. Rev., 2016, vol. 166, art. 112620. https://doi.org/10.1016/j.rser.2022.112620

  2. Yamaka, W., Phadkantha, R., and Rakpho, P., Energy Rep., 2021, vol. 7, p. 240, https://doi.org/10.1016/j.egyr.2021.06.040

    Article  Google Scholar 

  3. Dincer, I., and Acar, C., Int. J. Energy Res., 2015, vol. 39, p. 585. https://doi.org/10.1002/er.3329

    Article  Google Scholar 

  4. Spivey, J.J., Catal. Today, 2015, vol. 100, p. 171. https://doi.org/10.1016/j.cattod.2004.12.011

    Article  CAS  Google Scholar 

  5. Liu, H., and Liang, D., Renew. Sust. Energ. Rev., 2013, vol. 18, p. 486. https://doi.org/10.1016/j.rser.2012.10.041

    Article  Google Scholar 

  6. Zhang, F., Zhao, P., Niu, M., and Maddy, J., Int. J. Hydrog. Energy., 2016, vol. 41, no. 33, p. 14535. https://doi.org/10.1016/j.ijhydene.2016.05.293

    Article  CAS  Google Scholar 

  7. Cheekatamarla, P.K. and Finnerty, C.M., J. Power Sources, 2006, vol. 160, no. 1, p. 490. https://doi.org/10.1016/j.jpowsour.2006.04.078

    Article  CAS  Google Scholar 

  8. Breen, J.P., and Ross, J.R.H., Catal. Today, 1999, vol. 51, nos. 3–4, p. 521. https://doi.org/10.1016/S0920-5861(99)00038-3

    Article  CAS  Google Scholar 

  9. Li, D., Zeng, L., Li, X., Wang, X., Ma, H., Assabumrungrat, S., and Gong, J., Appl. Catal. (B), 2015, vols. 176–177, p. 532. https://doi.org/10.1016/j.apcatb.2015.04.020

    Article  CAS  Google Scholar 

  10. Marcoberardino, G.D., Sosio, F., Manzolini, G., and Campanari, S., Int. J. Hydrog. Energy, 2015, vol. 40, no. 24, p. 7559. https://doi.org/10.1016/j.ijhydene.2014.11.045

  11. Sun, J., Yang, G., Yoneyama, Y., and Tsubaki, N., ACS Catal., 2014, vol. 4, p. 3346. https://doi.org/10.1021/cs500967j

    Article  CAS  Google Scholar 

  12. Borup, R.L., Inbody, M.A., Semelsberger, T.A., Tafoya, J.I., and Guidry, D.R., Catal. Today, 2005, vol. 99, nos. 3–4, p. 263. https://doi.org/10.1016/j.cattod.2004.10.014

    Article  CAS  Google Scholar 

  13. Fu, Y., Hong, T., Chen, J., Alineand, A., and Jianyi, S., Thermochim. Acta., 2005, vol. 434, nos. 1–2, p. 22. https://doi.org/10.1016/j.tca.2004.12.023

    Article  CAS  Google Scholar 

  14. Semelsberger, T.A., Borup, R.L., and Greene, H.L., J. Power Sources, 2006, vol. 156, p. 497. https://doi.org/10.1016/j.jpowsour.2005.05.082

    Article  CAS  Google Scholar 

  15. Semelsberger, T.A., Ott, K.C., Borup, R.L., and Greene, H.L., Appl. Catal. (B)., 2005, vol. 61, nos. 3–4, p. 281. https://doi.org/10.1016/j.apcatb.2005.05.014

  16. Yaripour, F., Baghaei, F., Schmidt, I., and Perregaard, J., Catal. Commun., 2005, vol. 6, p. 147. https://doi.org/10.1016/j.catcom.2004.11.012

    Article  CAS  Google Scholar 

  17. Park, S.H., and Lee, C.S., Energy Convers. Manag., 2014, vol. 86, p. 848. https://doi.org/10.1016/j.enconman.2014.06.051

    Article  CAS  Google Scholar 

  18. Zhang, T-Q., Malik, F.R., Jung, S., and Kim, Y-B., Energy, 2022, vol. 239, pt A, art. 121980. https://doi.org/10.1016/j.energy.2021.121980

  19. Gayubo, A.G., Vicente, J., Ereña, J., Oar-Arteta, L., Azkoiti, M.J., Olazar, M., and Bilbao, J., Appl. Catal. (A), 2014, vol. 483, p. 76. https://doi.org/10.1016/j.apcata.2014.06.031

    Article  CAS  Google Scholar 

  20. Gazsi, A., Ugrai, I., and Solymosi, F., Appl. Catal. (A), 2011, vol. 391, no. 1–2, p. 360. https://doi.org/10.1016/j.apcata.2010.04.054

    Article  CAS  Google Scholar 

  21. Semelsberger, T.A., Ott, K.C., Borup, R.L., and Greene, H.L., Appl. Catal. (A), 2006, vol. 309, no. 2, p. 210. https://doi.org/10.1016/j.apcata.2006.05.009

    Article  CAS  Google Scholar 

  22. González-Gil, R., Kowalik, P., Antoniak-Jurak, K., Lewalska-Graczyk, A., Herrera, C., Larrubia, M.Á., Pieta, P., Nowakowski, R., Pieta, I.S., and Alemany, L.J., Chem. Eng. J., 2021, vol. 423, art. 129996. https://doi.org/10.1016/j.cej.2021.129996

  23. Kim, D., Choi, B., Park, G., Lee, K., Lee, D-W., and Jung, S., Chem. Eng. Sci., 2020, vol. 216, art. 115535. https://doi.org/10.1016/j.ces.2020.115535

  24. Park, S., Choi, B., Kim, H., and Lee, Y.J., Appl. Catal. (A), 2012, vol. 437–438, p. 173. https://doi.org/10.1016/j.apcata.2012.06.029

    Article  CAS  Google Scholar 

  25. Park, S., Kim, H., and Choi, B., Catal. Today, 2011, vol. 164, no. 1, p. 240. https://doi.org/10.1016/j.cattod.2010.10.079

    Article  CAS  Google Scholar 

  26. Ledesma, C., and Llorca, J., Fuel, 2013, vol. 104, p. 711. https://doi.org/10.1016/j.fuel.2012.06.116

    Article  CAS  Google Scholar 

  27. Tanaka, Y., Kikuchi, R., Takeguchi, T., and Eguchi, K., Appl. Catal. (B), 2005, vol. 57, no. 3, p. 211. https://doi.org/10.1016/j.apcatb.2004.11.007

    Article  CAS  Google Scholar 

  28. Tanaka, Y., Utaka, T., Kikuchi, R., and Eguchi, K., Appl. Catal. (A), 2003, vol. 238, no. 1, p. 11. https://doi.org/10.1016/S0926-860X(02)00095-9

    Article  CAS  Google Scholar 

  29. Tanaka, Y., Utaka, T., Kikuchi, R., Sasaki, K., and Eguchi, K., Appl. Catal. (A), 2003, vol. 242, no. 2, p. 287. https://doi.org/10.1016/S0926-860X(02)00529-X

    Article  CAS  Google Scholar 

  30. Tanaka, Y., Utaka, T., Kikuchi, R., Takeguchi, T., Sasaki, K., and Eguchi, K., J. Catal., 2003, vol. 215, no. 2, p. 271. https://doi.org/10.1016/S0021-9517(03)00024-1

    Article  CAS  Google Scholar 

  31. Faungnawakij, K., Kikuchi, R., Fukunaga, T., and Eguchi, K., Catal. Today, 2008, vol. 138, nos. 3–4, p. 157. https://doi.org/10.1016/j.cattod.2008.05.004

    Article  CAS  Google Scholar 

  32. Amaya, S.L., Alonso-Núñez, G., Zepeda, T.A., Fuentes, S., and Echavarría, A., Appl. Catal. (B), 2014, vols. 148–149, p. 221. https://doi.org/10.1016/j.apcatb.2013.10.057

    Article  CAS  Google Scholar 

  33. Kowalik, P., Antoniak-Jurak, K., Błesznowski, M., Herrera, M.C., Larrubia, M.A., Alemany, L.J., and Pieta, I.S., Catal. Today, 2015, vol. 254, p. 129. https://doi.org/10.1016/j.cattod.2015.03.002

    Article  CAS  Google Scholar 

  34. Liu, Q., Wang, A., Wang, X., and Zhang, T., Micropor. Mesopor. Mater., 2007, vol. 100, nos. 1–3, p. 35. https://doi.org/10.1016/j.micromeso.2006.10.011

    Article  CAS  Google Scholar 

  35. Tian, Y.P., Liu, X.M., Rood, M.J., and Yan, Z-F., Appl. Catal. (A), 2017, vol. 545, p. 1. https://doi.org/10.1016/j.apcata.2017.07.022

    Article  CAS  Google Scholar 

  36. Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaga, T., Kawashima, S., Kikuchi, R., and Eguchi, K., Appl. Catal. (A), 2006, vol. 304, p. 40. https://doi.org/10.1016/j.apcata.2006.02.021

    Article  CAS  Google Scholar 

  37. Takeishi, K. and Suzuki, H., Appl. Catal. (A), 2004, vol. 260, no. 1, p. 111. https://doi.org/10.1016/j.apcata.2003.10.006

    Article  CAS  Google Scholar 

  38. Mathew, T., Yamada, Y., Ueda, A., Shioyama, H., and Kobayashi, T., Appl. Catal. (A), 2005, vol. 286, no. 1, p. 11. https://doi.org/10.1016/j.apcata.2005.02.030

    Article  CAS  Google Scholar 

  39. Bugyi, L., and Solymosi, F., J. Phys. Chem. (B), 2001, vol. 105, no. 19, p. 4337. https://doi.org/10.1021/jp004350j

  40. Solymosi, F., Cserényi, J., and Ovári, L., Catal. Lett., 1997, vol. 44, p. 89. https://doi.org/10.1023/A:1018904404090

  41. Held, A.M., Manthorne, K.C., Pacey, P.D., and Reinholdt, H.P., Can. J. Chem., 1977, vol. 55, no. 23, p. 4128. https://cdnsciencepub.com/doi/10.1139/v77-585

    Article  CAS  Google Scholar 

  42. Leifer, E., and Urey, H.C., J. Am. Chem. Soc., 1942, vol. 64, no. 4, p. 994. https://doi.org/10.1021/ja01256a070

    Article  CAS  Google Scholar 

  43. Abad, A., Adánez, J., García-Labiano, F., de Diego, L.F., and Gayán, P., Combust. Flame, 2010, vol. 157, no. 3, p. 602. https://doi.org/10.1016/j.combustflame.2009.10.010

    Article  CAS  Google Scholar 

  44. Solymosi, F., and Klivényi, G., J. Electron Spectr. Relat. Phenomena, 1993, vols. 64–65, p. 499. https://doi.org/10.1016/0368-2048(93)80115-3

    Article  Google Scholar 

  45. Wang, S., Ishihara, T., and Takita, Y., Appl. Catal. (A), 2002, vol. 228, nos. 1–2 p. 167. https://doi.org/10.1016/S0926-860X(01)00985-1

    Article  CAS  Google Scholar 

  46. Zhang, Q., Li, X., Fujimoto, K., and Asami, K., Appl. Catal. (A), 2005, vol. 288, nos. 1–2, p. 169. https://doi.org/10.1016/j.apcata.2005.04.038

    Article  CAS  Google Scholar 

  47. Monzón, A., Garetto, T.F., and Borgna, A., Appl. Catal. (A), 2003, vol. 248, no. 1–2, p. 279. https://doi.org/10.1016/S0926-860X(03)00300-4

    Article  CAS  Google Scholar 

  48. Chen, Y., Shao, Z., and Xu, N., J. Nat. Gas Chem., 2008, vol. 17, no. 1, p. 75. https://doi.org/10.1016/S1003-9953(08)60029-8

    Article  CAS  Google Scholar 

  49. Zhang, Q., Du, F., He, X., Liu, Z-T., Liu, Z-W., and Zhou, Y., Catal. Today, 2009, vol. 146, nos. 1–2, p. 50. https://doi.org/10.1016/j.cattod.2009.01.026

    Article  CAS  Google Scholar 

  50. Solymosi, F. and Klivényi, G., Surf. Sci., 1998, vol. 409, no. 2, p. 241. https://doi.org/10.1016/S0039-6028(98)00209-X

    Article  CAS  Google Scholar 

  51. Badmaev, S.D., Akhmetov, N.O., and Sobyanin, V.A., Int. J. Hydr. Energy, 2021, vol. 46, no. 72, p. 35877. https://doi.org/10.1016/j.ijhydene.2021.01.229

    Article  CAS  Google Scholar 

  52. Nilsson, M., Jozsa, P., and Pettersson, L.J., Appl. Catal. (B), 2007, vol. 76, no. 1–2, p. 42. https://doi.org/10.1016/j.apcatb.2007.05.011

    Article  CAS  Google Scholar 

  53. Agueniou, F., Vidal, H., López, J.D.D., HernándezGarrido, J.C., Cauqui, M.A., Botana, F.J., Calvino, J.J., Galvita, V.V., and Gatica, J.M., Catal. Commun., 2021, vol. 148, art. 106181. https://doi.org/10.1016/j.catcom.2020.106181

  54. Asami, K., Seto, K., Saima, H., and Mogi, Y., Catal. Surv. Asia, 2013, vol. 17, p. 14. https://doi.org/10.1007/s10563-012-9149-9

  55. Kowalik, P., Krysa, M., Antoniak-Jurak, K., Próchniak, W., Pieta, P., Lisowski, W., Nowakowski, R., Sroka-Bartnicka, A., and Pieta, I.S., Chem. Eng. J., 2023, vol. 474, art. 145369. https://doi.org/10.1016/j.cej.2023.145369

  56. Ma, Z., Jiang, Q.Z., Wang, X., Zhang, W.G., and Ma, Z.F., Catal. Commun., 2012, vol. 17, p. 49. https://doi.org/10.1016/j.catcom.2011.10.014

    Article  CAS  Google Scholar 

Download references

Funding

This work was financial supported by the Scientific Research Foundation of Liaoning Province (2022JH2/101300125), and the Education Department of Liaoning Province (LJKMZ20220982).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Ni or Q. Zhang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ni, Z., Li, J. et al. Catalysts for Dimethyl Ether Reforming to Hydrogen (A Review). Russ J Gen Chem 94, 690–702 (2024). https://doi.org/10.1134/S1070363224030204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224030204

Keywords:

Navigation