Skip to main content
Log in

Quantum Mechanical Calculation of Graphene Oxide Nanosheet Prepared via Modified Hummer Method: Role in Dye Degradation and Antibacterial Activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

This paper reports the synthesis of graphene oxide nanosheet (GONS) through the modified Hummer’s method. The characterization was done by X-ray diffraction (XRD), UV-Visible, and Fourier transform infrared (FT-IR) spectroscopic methods. Scanning Electron Micrograph (SEM) was employed to study morphological features of the nanosheet showing the formation of firmly suspended GONS. The photocatalytic activity of the GONS was tested against methylene blue (MB) dye and 63% degradation was obtained in 60 minutes. The antibacterial activity was also tested against Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli) with zone of inhibition values of 12±0 and 14±0.4 mm respectively. Through the density functional theory (DFT) calculations, important parameters like highest and lowest occupied molecular orbitals (HOMO and LUMO), absolute softness and hardness, etc. were calculated. The HOMO-LUMO difference was found to be 2.806 eV which was correlated with the bioactivity and stability of the nanosheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Nasker, S.S., Ajayan, P.M., and Nayak, S., ACS Mater. Lett., 2023, vol. 5, p. 673. https://doi.org/10.3390/cryst13060909

  2. Georgakilas, V., Perman, J.A., Tucek, J., and Zboril, R., Chem. Rev., 2015, vol. 115, p. 4744. https://doi.org/10.1021/cr500304f

    Article  CAS  PubMed  Google Scholar 

  3. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S., Adv Mater., 2010, vol. 22, p. 3906. https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  4. Yang, M., Hou, Y., and Kotov, N.A., Nano Today, 2012, vol. 7, p. 430. https://doi.org/10.3762/bjnano.6.237

    Article  CAS  Google Scholar 

  5. Yang, G., Li, L., Lee, W.B., and Ng, M.C., Sci. Technol. Adv. Mat., 2018, vol. 19, p. 613. https://doi.org/10.1080/14686996.2018.1494493

    Article  CAS  Google Scholar 

  6. Côa, F., de Souza Delite, F., Strauss, M., and Martinez, D.S.T., NanoImpact, 2022, vol. 27, p. 100413. https://doi.org/10.3389/frcrb.2023.1241637

    Article  PubMed  Google Scholar 

  7. Seabra, A.B., Paula, A.J., de Lima, R., Alves, O. L., and Durán, N., Chem. Res. Toxicol., 2014, vol. 27, p. 159. https://doi.org/10.1016/j.chempr.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  8. Mu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., and Yan, B., Chem. Rev., 2014, vol. 114, p. 7740. https://doi.org/10.1021/ja0512881

  9. Singh, D.P., Herrera, C.E., Singh, B., Singh, S., Singh, R. K., and Kumar, R., 2018, Mater. Sci. Eng. (C), 2018, vol. 86, p. 173. https://doi.org/10.1016/j.msec.2018.01.004

    Article  CAS  Google Scholar 

  10. Suhaimin, N.S., Hanifah, M.F.R., Azhar, M., Jaafar, J., Aziz, M., Ismail, A.F., and Mohamud, R., Mater. Chem. Phys., 2022, vol. 278, p. 125629. https://doi.org/10.1016/J.MATCHEMPHYS.2021.125629

    Article  CAS  Google Scholar 

  11. Mao, H.Y., Laurent, S., Chen, W., Akhavan, O., Imani, M., Ashkarran, A.A., and Mahmoudi, M., Chem. Rev., 2013, vol. 113, no. 5, p. 3407. https://doi.org/10.1021/cr300335p

  12. Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H., and Min, D.H., Acc. Chem. Res., 2013, vol. 46, no. 10, p. 2211. https://doi.org/10.1021/ar300159f

    Article  CAS  PubMed  Google Scholar 

  13. Chen, D., Feng, H., and Li, J., Chem. Rev., 2012, vol. 112, no. 11, p. 6027. https://doi.org/10.1021/cr300115g

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen, E.P., Silva, C.D.C.C., and Merkoçi, A., Nanoscale, 2020, vol. 12, p. 19043. https://doi.org/10.1039/d0nr05287f

    Article  CAS  PubMed  Google Scholar 

  15. Tsukanov, A.A., Turk, B., Vasiljeva, O., and Psakhie, S.G., Nanomaterials, 2022, vol. 12, p. 650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saleem, J., Wang, L., and Chen, C., Adv. Healthc.Mater., 2018, vol. 7, p. 1800525. https://doi.org/10.1002/adhm.201800525

    Article  CAS  Google Scholar 

  17. Zhao, J., Liu, L., and Li, F., Graphene Oxide: Physics and Applications, London: Springer, 2015, vol. 1, p. 161. https://doi.org/10.1007/978-3-662-44829-8

  18. Khan, T., Azad, I., Ahmad, R., Lawrence, A.J., Azam, M., Wabaidur, S.M., Al-Resayes, S.I., Raza, S., and Khan, A.R, King Saud Univ. Sci., 2021, vol. 33, p. 101313. https://doi.org/10.1002/vjch.202200233

    Article  CAS  Google Scholar 

  19. Bursch, M., Mewes, J.M., Hansen, A., and Grimme, S., Angew. Chem. Int. Ed., 2022, vol. 61, p. e202205735. https://doi.org/10.1002/anie.202205735

  20. Jabeen, S., Siddiqui, V.U., Rastogi, S., Srivastava, S., Bala, S., Ahmad, N., and Khan, T. Mater. Today., Chem., 2023, vol. 33, p. 101712. https://doi.org/10.1016/j.mtchem.2023.101712

    Article  CAS  Google Scholar 

  21. Suhaimin, N. S., Hanifah, M.F.R., Wani Jusin, J., Jaafar, J., Aziz, M., Ismail, A.F., and Mohamud, R., Phys. E: Low-Dimens. Syst. Nanostructures., 2021 vol. 131, p. 114727. https://doi.org/

    Article  CAS  Google Scholar 

  22. Khalili, D., New J. Chem., 2016, vol. 40, no. 3, p. 2547. https://doi.org/10.1039/c5nj02314a

    Article  CAS  Google Scholar 

  23. Faiz, M.A., Azurahanim, C.C., Raba’ah, S.A., and Ruzniza, M.Z., Res. Phy., 2020, vol. 16, p. 102954. https://doi.org/

  24. Ashori, A., Rahmani, H., and Bahrami, R., Polymer Testing, 2015, vol. 48, p. 82. https://doi.org/10.1016/j.polymertesting.2015.09.010

    Article  CAS  Google Scholar 

  25. Sadrolhosseini, A.R., Habibiasr, M., Shafie, S., Solaimani, H., and Lim, H.N., Int. J. Mol. Sci., 2019, vol. 20, p. 6153. https://doi.org/10.3390/ijms20246153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, M., Duan, W., Chen, Y., and Du, A., Nanoscale, 2015, vol. 7, p. 15168. https://doi.org/10.1039/C5NR04431F

    Article  CAS  PubMed  Google Scholar 

  27. Shao, J.J., Lv, W., and Yang, Q.H., Adv. Mater., 2014, vol. 26, p. 5586. https://doi.org/10.1002/adma.201400267

    Article  CAS  PubMed  Google Scholar 

  28. Alam, S.N., Sharma, N., and Kumar, L., Graphene, 2017, vol. 6, p. 1. https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  29. Sagadevan, S., Lett, J.A., Weldegebrieal, G.K., Garg, S., Oh, W.C., Hamizi, N.A., and Johan, M.R., Catalysts, 2021, vol. 11, no. 8, p. 1008. https://doi.org/10.3390/catal11081008

    Article  CAS  Google Scholar 

  30. Varma, G.D., J. Alloys Compd., 2019, vol. 806, p. 1469. https://doi.org/10.1016/j.jallcom.2019.07.355

  31. Liu, J., Cui, L., and Losic, D., Acta Biomater., 2013, vol. 9, p. 9243. https://doi.org/10.1016/j.actbio.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed, H. and Hashim, A., Trans. Electr. Electron. Mater., 2021, vol. 22, p. 335. https://doi.org/10.1007/s42341-020-00244-6

    Article  Google Scholar 

  33. Jabeen, S., Modanwal, S., Mishra, N., Siddiqui, V.U., Bala, S., and Khan, T., Int. J. Nano Dimens., 2024, vol. 15, no. 2. https://doi.org/10.57647/j.ijnd.2024.1502.16

  34. Parcheta, P., Głowińska, E., and Datta, J., Eur. Polym. J., 2020, vol. 123, p. 109422. https://doi.org/10.1016/j.eurpolymj.2019.109

  35. de Lima, A.H., Tavares, C.T., da Cunha, C.C.S., Vicentini, N.C., Carvalho, G.R., Fragneaud, B., de Mendonça, J.P.A., Eur. Phys. J. (B), 2020, vol. 93, no. 6, p. 105. https://doi.org/10.1140/epjb/e2020-100578-7

    Article  CAS  Google Scholar 

  36. Pulingam, T., Doctoral dissertation, University of Malaya, 2020.

  37. Mashburn-Warren, L., Howe, J., Garidel, P., Richter, W., Steiniger, F., Roessle, M., and Whiteley, M., Mol. Microbiol., 2008, vol. 69, p. 491. https://doi.org/10.1111/j.1365-2958.2008.06302.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perreault, F., De Faria, A.F., Nejati, S., and Elimelech, M., ACS Nano, 2015, vol. 9, no. 7, p. 7226. https://doi.org/10.1021/acsnano.5b02067

    Article  CAS  PubMed  Google Scholar 

  39. Aunkor, M.T.H., Raihan, T., Prodhan, S.H., Metselaar, H.S.C., Malik, S.U.F., and Azad, A.K., Soc. Open Sci., 2020, vol. 7, no. 7, p. 200640. https://doi.org/10.1098/rsos.200640

    Article  CAS  Google Scholar 

  40. Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., and Khan, I., Water, 2022, vol. 14, p. 242. https://doi.org/10.3390/w14020242

    Article  CAS  Google Scholar 

  41. Jabeen, S., Ganie, A.S., Ahmad, N., Hijazi, S., Bala, S., Bano, D., and Khan, T., Inorg. Chem. Commun., 2023, vol. 152, p. 110729. https://doi.org/10.1016/j.inoche.2023.110729

    Article  CAS  Google Scholar 

  42. Jabeen, S., Siddiqui, V.U., Sharma, S., Rai, S., Bansal, P., Bala, S., Raza, A., Ahmad, M.I., Khan, A.R., and Khan, T., J. Alloys Compd., 2024, vol. 984, p. 174020. https://doi.org/10.1016/j.jallcom.2024.174020

  43. Zhou, X., Shi, T., and Zhou, H., Appl. Surf. Sci., 2012, vol. 258, p. 6204. https://doi.org/

  44. Nguyen, V.N., Tran, DT., Nguyen, M.T., Le, T.T.T., Ha, M.N., Nguyen, M.V., and Pham, T.D., Res. Chem. Intermed., 2018, vol. 44, p. 3081. https://doi.org/10.1007/s11164-018-3294-3

    Article  CAS  Google Scholar 

  45. Reddy, T.N., Manna, J., and Rana, R.K., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 19684. https://doi.org/10.1021/acsami.5b04820

    Article  CAS  PubMed  Google Scholar 

  46. Liu, Y., and Zhang, D., J. Alloys Compd., 2017, vol. 698, p. 60. https://doi.org/

    Article  CAS  Google Scholar 

  47. Ashkarran, A.A., and Mohammadi, B., Appl. Surf. Sci., 2015, vol. 342, p. 112. https://doi.org/10.1016/j.apsusc.2015.03.030

    Article  CAS  Google Scholar 

  48. Ameen, S., Seo, H.K., Akhtar, M.S., and Shin, H.S., J. Chem. Eng., 2012, vol. 210, p. 220. https://doi.org/10.1016/j.cej.2012.08.035

    Article  CAS  Google Scholar 

  49. Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W., and Voon, C.H., Proced. Eng., 2017, vol. 184, p. 469. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  50. Shahriary, L. and Athawale, A.A., Int. J. Renew. Energy Environ. Eng., 2014, vol. 2, p. 58.

    Google Scholar 

  51. Thiyagarajulu, N. and Arumugam, S., J. Clust. Sci., 2021, vol. 32, p. 559. https://doi.org/10.1007/s10876-020-01814-7

    Article  CAS  Google Scholar 

  52. Jabeen, S., Ahmad, N., Bala, S., Bano, D., and Khan, T., Int. J. Nano Dimens., 2023, vol. 14, p. 1. https://doi.org/10.22034/IJND.2022.1963262.2162

    Article  CAS  Google Scholar 

  53. Jabeen, S., Ganie, A.S., Bala, S., and Khan, T., Mater. Proceed. 2023, vol. 14, p. 5. https://doi.org/10.3390/IOCN2023-14445

Download references

ACKNOWLEDGMENTS

The authors are grateful to R & D cell of the Integral University for providing the Manuscript Communication Number (IU/R&D/2024-MCN0002355).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Khan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeen, S., Siddiqui, V.U., Mishra, N. et al. Quantum Mechanical Calculation of Graphene Oxide Nanosheet Prepared via Modified Hummer Method: Role in Dye Degradation and Antibacterial Activity. Russ J Gen Chem 94, 666–674 (2024). https://doi.org/10.1134/S1070363224030186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224030186

Keywords:

Navigation